4. EM算法-高斯混合模型GMM详细代码实现
1. EM算法-数学基础
2. EM算法-原理详解
3. EM算法-高斯混合模型GMM
4. EM算法-高斯混合模型GMM详细代码实现
5. EM算法-高斯混合模型GMM+Lasso
1. 前言
EM的前3篇博文分别从数学基础、EM通用算法原理、EM的高斯混合模型的角度介绍了EM算法。按照惯例,本文要对EM算法进行更进一步的探究。就是动手去实践她。
2. GMM实现
我的实现逻辑基本按照GMM算法流程中的方式实现。需要全部可运行代码,请移步我的github。
输入:观测数据\(x_1,x_2,x_3,...,x_N\)
对输入数据进行归一化处理
#数据预处理
def scale_data(self):
for d in range(self.D):
max_ = self.X[:, d].max()
min_ = self.X[:, d].min()
self.X[:, d] = (self.X[:, d] - min_) / (max_ - min_)
self.xj_mean = np.mean(self.X, axis=0)
self.xj_s = np.sqrt(np.var(self.X, axis=0))
输出:GMM的参数
- 初始化参数
#初始化参数
def init_params(self):
self.mu = np.random.rand(self.K, self.D)
self.cov = np.array([np.eye(self.D)] * self.K) * 0.1
self.alpha = np.array([1.0 / self.K] * self.K)
- E步:根据当前模型,计算模型\(k\)对\(x_i\)的影响
\]
#e步,估计gamma
def e_step(self, data):
gamma_log_prob = np.mat(np.zeros((self.N, self.K)))
for k in range(self.K):
gamma_log_prob[:, k] = log_weight_prob(data, self.alpha[k], self.mu[k], self.cov[k])
log_prob_norm = logsumexp(gamma_log_prob, axis=1)
log_gamma = gamma_log_prob - log_prob_norm[:, np.newaxis]
return log_prob_norm, np.exp(log_gamma)
- M步:计算\(\mu_{k+1},\Sigma_{k+1}^2,\pi_{k+1}\)。
\]
\]
\]
\]
#m步,最大化loglikelihood
def m_step(self):
newmu = np.zeros([self.K, self.D])
newcov = []
newalpha = np.zeros(self.K)
for k in range(self.K):
Nk = np.sum(self.gamma[:, k])
newmu[k, :] = np.dot(self.gamma[:, k].T, self.X) / Nk
cov_k = self.compute_cov(k, Nk)
newcov.append(cov_k)
newalpha[k] = Nk / self.N
newcov = np.array(newcov)
return newmu, newcov, newalpha
- 重复2,3两步直到收敛
最后加上loglikelihood的计算方法。
- 基本的计算方法按照公式定义。
\]
实现如下
def loglikelihood(self):
P = np.zeros([self.N, self.K])
for k in range(self.K):
P[:,k] = prob(self.X, self.mu[k], self.cov[k])
return np.sum(np.log(P.dot(self.alpha)))
但是这样的实现会有2个问题。
- 非矩阵运算,速度慢。
- 非常容易underflow,因为\(P.dot(self.alpha)\)非常容易是一个很小的数,系统把它当作0处理。
- 使用以下\(LogSumExp\)公式进行改进,并且令\(a_h = log(Q_i(z^{(i)}))+log(P(x^{(i)},z^{(i)}|\theta))\),具体实现看github:
\]
3. 总结
首先gmm算法会很容易出现underflow和overflow,所以处理的时候有点麻烦。但是\(LogSumExp\)能解决大部分这个问题。还有就是我的实现方式是需要协方差矩阵一定要是正定矩阵,所以我的代码中也做了处理。我们好想还不能够满足于最基础的GMM算法,所以在下一篇文章中我们要对GMM加入一个惩罚项,并且用对角矩阵的方式代替协方差矩阵。
4. EM算法-高斯混合模型GMM详细代码实现的更多相关文章
- 6. EM算法-高斯混合模型GMM+Lasso详细代码实现
1. 前言 我们之前有介绍过4. EM算法-高斯混合模型GMM详细代码实现,在那片博文里面把GMM说涉及到的过程,可能会遇到的问题,基本讲了.今天我们升级下,主要一起解析下EM算法中GMM(搞事混合模 ...
- 3. EM算法-高斯混合模型GMM
1. EM算法-数学基础 2. EM算法-原理详解 3. EM算法-高斯混合模型GMM 4. EM算法-高斯混合模型GMM详细代码实现 5. EM算法-高斯混合模型GMM+Lasso 1. 前言 GM ...
- 5. EM算法-高斯混合模型GMM+Lasso
1. EM算法-数学基础 2. EM算法-原理详解 3. EM算法-高斯混合模型GMM 4. EM算法-GMM代码实现 5. EM算法-高斯混合模型+Lasso 1. 前言 前面几篇博文对EM算法和G ...
- 高斯混合模型GMM与EM算法的Python实现
GMM与EM算法的Python实现 高斯混合模型(GMM)是一种常用的聚类模型,通常我们利用最大期望算法(EM)对高斯混合模型中的参数进行估计. 1. 高斯混合模型(Gaussian Mixture ...
- EM算法和高斯混合模型GMM介绍
EM算法 EM算法主要用于求概率密度函数参数的最大似然估计,将问题$\arg \max _{\theta_{1}} \sum_{i=1}^{n} \ln p\left(x_{i} | \theta_{ ...
- 贝叶斯来理解高斯混合模型GMM
最近学习基础算法<统计学习方法>,看到利用EM算法估计高斯混合模型(GMM)的时候,发现利用贝叶斯的来理解高斯混合模型的应用其实非常合适. 首先,假设对于贝叶斯比较熟悉,对高斯分布也熟悉. ...
- 高斯混合模型 GMM
本文将涉及到用 EM 算法来求解 GMM 模型,文中会涉及几个统计学的概念,这里先罗列出来: 方差:用来描述数据的离散或波动程度. \[var(X) = \frac{\sum_{i=1}^N( X_ ...
- Spark2.0机器学习系列之10: 聚类(高斯混合模型 GMM)
在Spark2.0版本中(不是基于RDD API的MLlib),共有四种聚类方法: (1)K-means (2)Latent Dirichlet allocation (LDA) ...
- 2. EM算法-原理详解
1. EM算法-数学基础 2. EM算法-原理详解 3. EM算法-高斯混合模型GMM 4. EM算法-高斯混合模型GMM详细代码实现 5. EM算法-高斯混合模型GMM+Lasso 1. 前言 概率 ...
随机推荐
- 如何使用SetTimer
1.SetTimer定义在那里? SetTimer表示的是定义个定时器.根据定义指定的窗口,在指定的窗口(CWnd)中实现OnTimer事件,这样,就可以相应事件了. SetTimer有两个函数.一个 ...
- VS2010启动多个实例调试
项目中经常出现一个解决方案里面有多个程序,如果想按F5启动多个实例进行操作调试那该怎么操作呢? 以前自己都使用附加进程的方法调试,这样的调试不需要按F5,自己只要运行多个程序后,使用vs的附加进程到对 ...
- Swift 构造与析构
前言 与 OC 一样,Swift 中也存在构造和析构过程.不同的是,OC 中的构造方法和析构方法只是普通的方法,而 Swift 中构造器和析构器是一种特殊的结构. 1.构造器 在 Swift 中,类或 ...
- 基于matplotlib的数据可视化 - 柱状图bar
柱状图bar 柱状图常用表现形式为: plt.bar(水平坐标数组,高度数组,宽度比例,ec=勾边色,c=填充色,label=图例标签) 注:当高度值为负数时,柱形向下 1 语法 bar(*args, ...
- Error Code: 1030. Got error -1 from storage engine
这个问题通常是数据库可以建表,旧表可以插入数据,正常:可是新表无法插入数据,无法改名等操作: 先从文件权限找方法,没法解决: 在网上搜了一通,大家都说的磁盘满了,但是我们的磁盘还空着呢! 后来,发现! ...
- javascript 中 split 函数分割字符串成数组
分割字符串成数组的方法有很多,不过使用最多的还是split函数 <script language="javascript"> str="2,2,3,5,6,6 ...
- Oracle 12C -- plug unplugged PDB into CDB
connetct to CDB as a common user and verify that pdb_test is closed SQL> select con_id,dbid,name, ...
- 【转】IT业给世界带来的危机
IT业给世界带来的危机 昨天写了文章之后,回忆起这几年在湾区的经历,觉得自己是一个很不幸的人.然而就在今天,我的自怜奇妙的转换成了另一种感情,因为我看到了更不幸的人…… 正在女朋友 Cinny 的父母 ...
- java_selenium 开发环境搭建
java selenium 开发环境搭建 很多同学问我java selenium的开发环境怎么搭建,在这里简要说明一下. 安装jdk 这个自己一定要会 下载IDE 对于初学者来说java IDE无疑是 ...
- oracle 定时任务例子【项目例子】
说明:请在plsql工具的命令窗口中,依次按步骤执行如下脚本 (1)建立备份表 my_test_log2create table my_test_log2 as select * from my_ ...