4. EM算法-高斯混合模型GMM详细代码实现
1. EM算法-数学基础
2. EM算法-原理详解
3. EM算法-高斯混合模型GMM
4. EM算法-高斯混合模型GMM详细代码实现
5. EM算法-高斯混合模型GMM+Lasso
1. 前言
EM的前3篇博文分别从数学基础、EM通用算法原理、EM的高斯混合模型的角度介绍了EM算法。按照惯例,本文要对EM算法进行更进一步的探究。就是动手去实践她。
2. GMM实现
我的实现逻辑基本按照GMM算法流程中的方式实现。需要全部可运行代码,请移步我的github。
输入:观测数据\(x_1,x_2,x_3,...,x_N\)
对输入数据进行归一化处理
#数据预处理
def scale_data(self):
for d in range(self.D):
max_ = self.X[:, d].max()
min_ = self.X[:, d].min()
self.X[:, d] = (self.X[:, d] - min_) / (max_ - min_)
self.xj_mean = np.mean(self.X, axis=0)
self.xj_s = np.sqrt(np.var(self.X, axis=0))
输出:GMM的参数
- 初始化参数
#初始化参数
def init_params(self):
self.mu = np.random.rand(self.K, self.D)
self.cov = np.array([np.eye(self.D)] * self.K) * 0.1
self.alpha = np.array([1.0 / self.K] * self.K)
- E步:根据当前模型,计算模型\(k\)对\(x_i\)的影响
\]
#e步,估计gamma
def e_step(self, data):
gamma_log_prob = np.mat(np.zeros((self.N, self.K)))
for k in range(self.K):
gamma_log_prob[:, k] = log_weight_prob(data, self.alpha[k], self.mu[k], self.cov[k])
log_prob_norm = logsumexp(gamma_log_prob, axis=1)
log_gamma = gamma_log_prob - log_prob_norm[:, np.newaxis]
return log_prob_norm, np.exp(log_gamma)
- M步:计算\(\mu_{k+1},\Sigma_{k+1}^2,\pi_{k+1}\)。
\]
\]
\]
\]
#m步,最大化loglikelihood
def m_step(self):
newmu = np.zeros([self.K, self.D])
newcov = []
newalpha = np.zeros(self.K)
for k in range(self.K):
Nk = np.sum(self.gamma[:, k])
newmu[k, :] = np.dot(self.gamma[:, k].T, self.X) / Nk
cov_k = self.compute_cov(k, Nk)
newcov.append(cov_k)
newalpha[k] = Nk / self.N
newcov = np.array(newcov)
return newmu, newcov, newalpha
- 重复2,3两步直到收敛
最后加上loglikelihood的计算方法。
- 基本的计算方法按照公式定义。
\]
实现如下
def loglikelihood(self):
P = np.zeros([self.N, self.K])
for k in range(self.K):
P[:,k] = prob(self.X, self.mu[k], self.cov[k])
return np.sum(np.log(P.dot(self.alpha)))
但是这样的实现会有2个问题。
- 非矩阵运算,速度慢。
- 非常容易underflow,因为\(P.dot(self.alpha)\)非常容易是一个很小的数,系统把它当作0处理。
- 使用以下\(LogSumExp\)公式进行改进,并且令\(a_h = log(Q_i(z^{(i)}))+log(P(x^{(i)},z^{(i)}|\theta))\),具体实现看github:
\]
3. 总结
首先gmm算法会很容易出现underflow和overflow,所以处理的时候有点麻烦。但是\(LogSumExp\)能解决大部分这个问题。还有就是我的实现方式是需要协方差矩阵一定要是正定矩阵,所以我的代码中也做了处理。我们好想还不能够满足于最基础的GMM算法,所以在下一篇文章中我们要对GMM加入一个惩罚项,并且用对角矩阵的方式代替协方差矩阵。
4. EM算法-高斯混合模型GMM详细代码实现的更多相关文章
- 6. EM算法-高斯混合模型GMM+Lasso详细代码实现
1. 前言 我们之前有介绍过4. EM算法-高斯混合模型GMM详细代码实现,在那片博文里面把GMM说涉及到的过程,可能会遇到的问题,基本讲了.今天我们升级下,主要一起解析下EM算法中GMM(搞事混合模 ...
- 3. EM算法-高斯混合模型GMM
1. EM算法-数学基础 2. EM算法-原理详解 3. EM算法-高斯混合模型GMM 4. EM算法-高斯混合模型GMM详细代码实现 5. EM算法-高斯混合模型GMM+Lasso 1. 前言 GM ...
- 5. EM算法-高斯混合模型GMM+Lasso
1. EM算法-数学基础 2. EM算法-原理详解 3. EM算法-高斯混合模型GMM 4. EM算法-GMM代码实现 5. EM算法-高斯混合模型+Lasso 1. 前言 前面几篇博文对EM算法和G ...
- 高斯混合模型GMM与EM算法的Python实现
GMM与EM算法的Python实现 高斯混合模型(GMM)是一种常用的聚类模型,通常我们利用最大期望算法(EM)对高斯混合模型中的参数进行估计. 1. 高斯混合模型(Gaussian Mixture ...
- EM算法和高斯混合模型GMM介绍
EM算法 EM算法主要用于求概率密度函数参数的最大似然估计,将问题$\arg \max _{\theta_{1}} \sum_{i=1}^{n} \ln p\left(x_{i} | \theta_{ ...
- 贝叶斯来理解高斯混合模型GMM
最近学习基础算法<统计学习方法>,看到利用EM算法估计高斯混合模型(GMM)的时候,发现利用贝叶斯的来理解高斯混合模型的应用其实非常合适. 首先,假设对于贝叶斯比较熟悉,对高斯分布也熟悉. ...
- 高斯混合模型 GMM
本文将涉及到用 EM 算法来求解 GMM 模型,文中会涉及几个统计学的概念,这里先罗列出来: 方差:用来描述数据的离散或波动程度. \[var(X) = \frac{\sum_{i=1}^N( X_ ...
- Spark2.0机器学习系列之10: 聚类(高斯混合模型 GMM)
在Spark2.0版本中(不是基于RDD API的MLlib),共有四种聚类方法: (1)K-means (2)Latent Dirichlet allocation (LDA) ...
- 2. EM算法-原理详解
1. EM算法-数学基础 2. EM算法-原理详解 3. EM算法-高斯混合模型GMM 4. EM算法-高斯混合模型GMM详细代码实现 5. EM算法-高斯混合模型GMM+Lasso 1. 前言 概率 ...
随机推荐
- Windows10内置Linux子系统
WSL 前言 前段时间,机子上的win10又偷偷摸摸升级到了一周年正式版,比较无奈.不过之前听闻这个版本已经支持内置的linux子系统,于是就怀着好奇心试玩了一把.虽然期间遇到了很多问题,但总体来 ...
- CGRectMake 延伸
判断给定的点是否被一个CGRect包含,可以用CGRectContainsPoint函数 BOOLcontains=CGRectContainsPoint(CGRectrect,CGPointpoin ...
- 关于less在DW中高亮显示问题
首先, 找到DW 安装目录. Adobe Dreamweaver CS5.5\configuration\DocumentTypes 中的,MMDocumentTypes.xml 这个文件,然后用记事 ...
- Oracle 12C -- 在相同的列的集合上创建多个索引
在12C中,可以在相同的列的集合上创建多个索引,但是多个索引的类型要不同.同一时刻,只有一个是可见的. SQL> create table emp_tab as select * from em ...
- mysql获取group by的总记录行数方法
mysql获取group by内部可以获取到某字段的记录分组统计总数,而无法统计出分组的记录数. mysql的SQL_CALC_FOUND_ROWS 使用 获取查询的行数 在很多分页的程序中都这样写: ...
- Android 上传文件,图片。以及服务器端接收相关。
前面一篇文章写了实现照相功能的一个例子,其实那个实现效果是个略缩图.要查看全图就要先指定照片的存放路径.以后我会修改那个文章.今天先说下图片,文件等上传的实现.接着拿照片说事,光照完了不行还得往服务器 ...
- SpringApplication初始化
SpringApplication: private void initialize(Object[] sources) { if (sources != null && source ...
- InlineModelAdmin对象的学习
一.InlineModelAdmin的介绍 管理界面可以在与父模型相同的页面上编辑模型.这些被称为内联. Django提供了两个子类,InlineModelAdmin它们是: TabularInlin ...
- elk 的报错和优化
参数调整 elasticsearch.yml配置文件里面,调整http.max_content_length: 500mb 这个默认就100m 建议调大 之前有过报错 #如果队列满了logstash就 ...
- sudo 的介绍
http://chenfage.blog.51cto.com/8804946/1830424