BZOJ3884: 上帝与集合的正确用法(欧拉函数 扩展欧拉定理)
Time Limit: 5 Sec Memory Limit: 128 MB
Submit: 3860 Solved: 1751
[Submit][Status][Discuss]
Description

Input
Output
Sample Input
2
3
6
Sample Output
1
4
HINT
Source
扩展欧拉定理$a^p \equiv a^{p \% \phi(M) + \phi(M)} \pmod {M}$
欧拉函数:1. 当$N > 3$时,$\phi(N)$为偶数
2.若$N$为偶数,则$\phi(N) <= \frac{N}{2}$
然后直接暴力算就行了,很显然不会超过$logp$层
#include<cstdio>
#include<map>
#include<cstring>
using namespace std;
const int MAXN = 1e7 + ;
inline int read() {
char c = getchar(); int x = , f = ;
while(c < '' || c > '') {if(c == '-') f = -; c = getchar();}
while(c >= '' && c <= '')x = x * + c - '', c = getchar();
return x * f;
}
int mp[MAXN];
int GetPhi(int x) {
int ans = x;
for(int i = ; i * i <= x; i++) {
if(!(x % i)) {
ans = ans / i * (i - );
while(!(x % i)) x /= i;
}
}
if(x > ) ans = ans / x * (x - );
return ans;
}
int fastpow(int a, int p, int mod) {
int base = ;
while(p) {
if(p & ) base = (1ll * base * a) % mod;
a = (1ll * a * a) % mod; p >>= ;
}
return base % mod;
}
int F(int mod) {
if(mp[mod] != -) return mp[mod];
int phi = GetPhi(mod);
return mp[mod] = fastpow(, F(phi) + phi, mod);
}
int main() {
memset(mp, -, sizeof(mp));
int QwQ = read();
mp[] = ;
while(QwQ--) {
int mod = read();
printf("%d\n", F(mod));
//printf("%d\n", GetPhi(mod));
}
return ;
}
BZOJ3884: 上帝与集合的正确用法(欧拉函数 扩展欧拉定理)的更多相关文章
- [bzoj3884]上帝与集合的正确用法——欧拉函数
题目大意 题解 出题人博客 代码 #include <bits/stdc++.h> using namespace std; const int M = 10001000; int phi ...
- [BZOJ3884] 上帝与集合的正确用法 (欧拉函数)
题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=3884 题目大意: 给出 M, 求 $2^{2^{2^{2^{...}}}}$ % M ...
- bzoj3884: 上帝与集合的正确用法 欧拉降幂公式
欧拉降幂公式:http://blog.csdn.net/acdreamers/article/details/8236942 糖教题解处:http://blog.csdn.net/skywalkert ...
- BZOJ 3884: 上帝与集合的正确用法 [欧拉降幂]
PoPoQQQ大爷太神了 只要用欧拉定理递归下去就好了.... 然而还是有些细节没考虑好: $(P,2) \neq 1$时分解$P=2^k*q$的形式,然后变成$2^k(2^{(2^{2^{...}} ...
- BZOJ3884: 上帝与集合的正确用法 拓展欧拉定理
Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“ ...
- bzoj千题计划264:bzoj3884: 上帝与集合的正确用法
http://www.lydsy.com/JudgeOnline/problem.php?id=3884 欧拉降幂公式 #include<cmath> #include<cstdio ...
- bzoj3884: 上帝与集合的正确用法(数论)
感觉是今天洛谷月赛T3的弱化版,会写洛谷T3之后这题一眼就会写了... 还是欧拉扩展定理 于是就在指数上递归%phi(p)+phi(p)直到1,则后面的指数就都没用了,这时候返回,边回溯边快速幂.因为 ...
- BZOJ3884 上帝与集合的正确用法(欧拉函数)
设f(n)为模n时的答案,由2k mod n=2k mod φ(n)+φ(n) mod n(并不会证),且k mod φ(n)=f(φ(n)),直接就可以得到一个递推式子.记搜一发即可. #inclu ...
- bzoj3884上帝与集合的正确用法
Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“ ...
随机推荐
- vue中遇到的坑
如何解决在vue中替换图片.一个使用base64,而我们使用zepto之后,src找不到资源,因为已经打包了,难道强行写base64. 1. 引入文件时语法很重要! import "Foot ...
- HDU 5416——CRB and Tree——————【DFS搜树】
CRB and Tree Time Limit: 8000/4000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Tota ...
- 拿到返回值,Callable示例
- intellijidea课程 intellijidea神器使用技巧 6-2 数据库关联
待温习完Spring之后再来看 database关联和表名字段等智能提示
- 深入理解java虚拟机阅读笔记(1)运行时数据区域
java虚拟机所管理的内存区域主要分为方法区.堆:虚拟机栈.本地方法栈.程序计数器,如图: 1.程序计数器是当前线程所执行的字节码行号指示器,用以记录当前指令执行的位置.程序计数器是线程私有的,每个线 ...
- HttpWebRequest Post请求webapi
1.WebApi设置成Post请求在方法名加特性[HttpPost]或者方法名以Post开头如下截图: 2.使用(服务端要与客户端对应起来)[单一字符串方式]:注意:ContentType = &qu ...
- 在Sql Server中使用Guid类型的列及设置Guid类型的默认值
1.列的类型为uniqueidentifier 2.列的默认值可以设为newid()
- MySQL的四种主要存储引擎
在数据库中存的就是一张张有着千丝万缕关系的表,所以表设计的好坏,将直接影响着整个数据库.而在设计表的时候,我们都会关注一个问题,使用什么存储引擎.等一下,存储引擎?什么是存储引擎? 什么是存储引擎? ...
- CODESOFT条码设计软件如何隐藏数据源方法
作为强大的条码标签设计软件,用户在用CODESOFT设计条码标签时,有时需要根据实际情况,将条码数据源隐藏,也就是使设计与打印出来的条形码下不带有数据.那么这要怎么在CODESOFT中实现呢?下面,小 ...
- 如何在windows下安装配置pyspark notebook
第一步:安装anaconda anaconda自带一系列科学计算包 下载链接:http://pan.baidu.com/s/1b4jWlg 密码:fqq3 接着配置环境变量:如我安装在D盘下 试一 ...