传送门

题目大意

给你一个n点m条边的有向图,q次询问,给定s,t,k,求由s到t至少经过k条边的最短路。

分析

我们设dp[i][j][k]为从i到j至少经过k条边的最短路,sp[i][j]意为从i到j只经过一条边的最短路,于是我们可以得到转移方程式:dp[i][k]=Min{dp[i][m][k-1]+sp[m][j]}。但是我们发现这个样复杂度并不行,于是我们考虑分块,定每一个块的大小为100,对于小于等于100的所有k我们使用上面的dp式子暴力预处理,在这之后我们将按以上方式求出的k=100时的值作为新的sp来更新所有为100的倍数的情况,注意由于题目要求是至少经过k条边而不是正好经过k条边,所以这个地方我们需要使用两点间最短距离更新一下之前求出的数组(具体实现见代码)。在有了这些预处理之后我们将给定的k分块,使得q=k/100,r=k%100,所以我们只需枚举一个v使得s到v经过r条边的最短路+v到t经过100q条边的最短路最小即可。

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<cctype>
#include<cmath>
#include<cstdlib>
#include<queue>
#include<ctime>
#include<vector>
#include<set>
#include<map>
#include<stack>
using namespace std;
const int inf = 0x3f3f3f3f;
int n,m,g[][],d[][],f[][],a[][][],b[][][],use[][];
inline void mul(int a[][],int b[][],int c[][]){
int i,j,k;
memset(use,0x3f,sizeof(use));
for(i=;i<=n;i++)
for(j=;j<=n;j++)
for(k=;k<=n;k++)
use[i][j]=min(use[i][j],a[i][k]+b[k][j]);
for(i=;i<=n;i++)
for(j=;j<=n;j++)
c[i][j]=use[i][j];
}
int main(){
int i,j,k,t;
scanf("%d",&t);
while(t--){
memset(g,0x3f,sizeof(g));
scanf("%d%d",&n,&m);
for(i=;i<=m;i++){
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
g[x][y]=min(g[x][y],z);
}
for(i=;i<=n;i++)
for(j=;j<=n;j++)
a[][i][j]=b[][i][j]=(i==j?:inf);
for(i=;i<=;i++)
mul(a[i-],g,a[i]);
for(i=;i<=;i++)
mul(b[i-],a[],b[i]);
for(i=;i<=n;i++)
for(j=;j<=n;j++)
d[i][j]=(i==j?:g[i][j]);
for(k=;k<=n;k++)
for(i=;i<=n;i++)
for(j=;j<=n;j++)
d[i][j]=min(d[i][j],d[i][k]+d[k][j]);
for(int _=;_<=;_++){
memset(f,0x3f,sizeof(f));
for(i=;i<=n;i++)
for(j=;j<=n;j++)
for(k=;k<=n;k++)
f[i][j]=min(f[i][j],b[_][i][k]+d[k][j]);
for(i=;i<=n;i++)
for(j=;j<=n;j++)
b[_][i][j]=f[i][j];
}
int q;
scanf("%d",&q);
for(i=;i<=q;i++){
int s,t,K;
scanf("%d%d%d",&s,&t,&K);
int s1=K%,s2=K/;
int ans=inf;
for(j=;j<=n;j++)
ans=min(ans,a[s1][s][j]+b[s2][j][t]);
if(ans<inf)printf("%d\n",ans);
else puts("-1");
}
}
return ;
}

hdu6331 Problem M. Walking Plan的更多相关文章

  1. HDU6331 Problem M. Walking Plan【Floyd + 矩阵 + 分块】

    HDU6331 Problem M. Walking Plan 题意: 给出一张有\(N\)个点的有向图,有\(q\)次询问,每次询问从\(s\)到\(t\)且最少走\(k\)条边的最短路径是多少 \ ...

  2. 2018 杭电多校3 - M.Walking Plan

    题目链接 Problem Description There are $$$n$$$ intersections in Bytetown, connected with $$$m$$$ one way ...

  3. 2018HDU多校训练-3-Problem M. Walking Plan

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=6331 Walking Plan  Problem Description There are n inte ...

  4. HDU6331Problem M. Walking Plan

    传送门 分块floyd $f[i][j][k]$表示从i走k步到j的最短路 $g[i][j][k]$表示从i走k*100步到j的最短路 $h[i][j][k]$表示从i至少走k步到j的最短路 询问从x ...

  5. 2018多校第三场 hdu6331 M :Walking Plan

    题目链接 hdu6331 自我吐槽,这场多校大失败,开局签到因输入输出格式写错,wa了3发.队友C题wa了1个小时,还硬说自己写的没错,结果我随便造了个小数据,他都没跑对.然后跑对了后又进入了无限的卡 ...

  6. 【做题】HDU6331 Walking Plan——矩阵&分块

    题意:给出一个有\(n\)个结点的有向图,边有边权.有\(q\)组询问,每次给出\(s,t,k\),问从\(s\)到\(t\)至少经过\(k\)条边的最短路. \(n \leq 50, \, q \l ...

  7. hdu6331 Walking Plan

    题意: sol: 考虑floyed 直接暴力做的话复杂度是kn^3会炸. 考虑一个比较神仙的分块做法. 注意到我们是可以直接求单独某个k的矩阵,使用矩阵快速幂即可(取min的矩阵乘法). 单独求一次的 ...

  8. 2018 Multi-University Training Contest 3 Solution

    A - Problem A. Ascending Rating 题意:给出n个数,给出区间长度m.对于每个区间,初始值的max为0,cnt为0.遇到一个a[i] > ans, 更新ans并且cn ...

  9. hdu多校第三场

    Problem D. Euler Function 思路:打表找找规律. #include<bits/stdc++.h> #define LL long long #define fi f ...

随机推荐

  1. Codeforces Round #266 (Div. 2)B(暴力枚举)

    很简单的暴力枚举,却卡了我那么长时间,可见我的基本功不够扎实. 两个数相乘等于一个数6*n,那么我枚举其中一个乘数就行了,而且枚举到sqrt(6*n)就行了,这个是暴力法解题中很常用的性质. 这道题找 ...

  2. memcache应对缓存失效问题

    .两个key,一个key用来存放数据,另一个用来标记失效时间 比如key是aaa,设置失效时间为30s,则另一个key为expire_aaa,失效时间为25s. 在取数据时,用multiget,同时取 ...

  3. Debian For ARM Webmin Server

    /******************************************************************************** * Debian For ARM W ...

  4. bzoj 4710 分特产

    有 $n$ 个人,$m$ 种物品,每种物品有 $a_i$ 个,求每个人至少分到一个的方案数 $n,m,a_i \leq 2000$ sol: 比上一个题简单一点 还是考虑容斥 每个人至少分到一个 = ...

  5. 下载安装tomcat至服务器

    1.安装JDK之后,下载Tomcat:http://tomcat.apache.org/download-70.cgi选择下载32-bit/64-bit Windows Service Install ...

  6. JS计算字符串的长度

    最近项目上经常要用到计算字符串的长度的问题,有时需要按照byte进行计算长度,所以我就想在页面上用js实现,于是就到网上查了相关的资料,发现确实有很多的版本,这里给出两个比较好用的. //方法一:逐个 ...

  7. Maven里头的pom.xml配置详解

    正常的pom配置文件如下所示: <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http ...

  8. virtualvm一次插件安装想到的

    在麒麟操作系统visualvm安装插件失败,因为使用的内网,所以在官网下载了插件到本地:因为本地安装的jdk1.6,为了享受jdk1.8,在visualvm文件中增加了对于jdk1.8的引用: exp ...

  9. c++11之三: sizeof运算符 auto的优势 __func__预定义标识符

    在C++11中,对非静态成员变量使用sizeof操作是合法的. auto推导的一个最大优势就是在拥有初始化表达式的复杂类型变量声明时简化代码.如:std:vector<std::string&g ...

  10. 由于簇计数比预计的高,格式化操作无法完成——Allocation Unit Size Adjustments for Larger NTFS Volumes.

    Allocation Unit Size Adjustments for Larger NTFS Volumes.   Problem: When trying to format a new vol ...