[codevs_1237]餐巾计划问题
题目描述
一个餐厅在相继的N 天里,每天需用的餐巾数不尽相同。假设第i天需要ri块餐巾(i=1,2,…,N)。餐厅可以购买新的餐巾,每块餐巾的费用为p分;或者把旧餐巾送到快洗部,洗一块需m天,其费用为f 分;或者送到慢洗部,洗一块需n 天(n>m),其费用为s<f 分。每天结束时,餐厅必须决定将多少块脏的餐巾送到快洗部,多少块餐巾送到慢洗部,以及多少块保存起来延期送洗。但是每天洗好的餐巾和购买的新餐巾数之和,要满足当天的需求量。
试设计一个算法为餐厅合理地安排好N
天中餐巾使用计划,使总的花费最小。
输入
文件第1 行有6 个正整数N,p,m,f,n,s。N 是要安排餐巾使用计划的天数;p
是每块新餐巾的费用;m 是快洗部洗一块餐巾需用天数;f
是快洗部洗一块餐巾需要的费用;n是慢洗部洗一块餐巾需用天数;s是慢洗部洗一块餐巾需要的费用。
接下来的N 行是餐厅在相继的N
天里,每天需用的餐巾数。
输出
输出仅有一个整数,为餐厅在相继的N 天里使用餐巾的最小总花费。
样例输入
3 10 2 3 3 2
5
6
7
样例输出
145 费用流。但是如何建图呢。把每天拆成两个点,i为每天有的干净餐巾数,i+N为每天有的脏餐巾数,建一个超级源点S,一个超级汇点T 把S向i连一条容量为INF,费用为p的边。表示每天可以买无限块餐巾,一条餐巾p分
把i向T连一条容量为ri,费用为0的边。表示每天需要ri块餐巾
把S向i+N连一条容量为ri,费用为0的边。表示每天会用脏ri块餐巾
把i+N向i+m连一条容量为INF,费用为f的边。表示每天可以去快洗部清洗无限块餐巾,耗时m天,一条餐巾需f分
把i+N向i+n连一条容量为INF,费用为s的边。表示每天可以去慢洗部清洗无限块餐巾,耗时n天,一条餐巾需s分
把i+N向i+N+1连一条容量为INF,费用为0的边。表示每天可以把未清洗的餐巾留到下一天
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int inq[],d[],h[],q[],from[],head,tail,k=,INF=,ans=,r[];
struct data{
int to,cap,cost,next;
}g[];
void add(int from,int to,int cap,int cost)
{
g[++k].next=h[from];h[from]=k;g[k].to=to;g[k].cap=cap;g[k].cost=cost;
g[++k].next=h[to];h[to]=k;g[k].to=from;g[k].cap=;g[k].cost=-cost;
}
bool spfa(int s,int t)
{
memset(inq,,sizeof(inq));
memset(d,/,sizeof(d));INF=d[];
d[s]=;inq[s]=;head=tail=;q[tail++]=s;
while(head<=tail)
{
int u=q[head++];inq[u]=;
for(int i=h[u];i;i=g[i].next)
{
if(g[i].cap&&d[u]+g[i].cost<d[g[i].to])
{
d[g[i].to]=d[u]+g[i].cost;from[g[i].to]=i;
if(!inq[g[i].to])
{
if(d[g[i].to]<d[q[head]])q[--head]=g[i].to;
else q[tail++]=g[i].to;inq[g[i].to]=;
}
}
}
}
if(d[t]==INF)return false;
return true;
}
void mcf(int t)
{
int minn=INF;
for(int i=from[t];i;i=from[g[i^].to])minn=min(minn,g[i].cap);
for(int i=from[t];i;i=from[g[i^].to])g[i].cap-=minn,g[i^].cap+=minn,ans+=minn*g[i].cost;
}
int main()
{
int N,p,m,f,n,s;scanf("%d%d%d%d%d%d",&N,&p,&m,&f,&n,&s);
for(int i=;i<=N;i++)
{
scanf("%d",&r[i]);
add(*N+,i,INF,p);add(i,*N+,r[i],);add(*N+,i+N,r[i],);
if(i+m<=N)add(i+N,i+m,INF,f);
if(i+n<=N)add(i+N,i+n,INF,s);
if(i+<=N)add(i+N,i+N+,INF,);
}
while(spfa(*N+,*N+))mcf(*N+);
printf("%d",ans);return ;
}
[codevs_1237]餐巾计划问题的更多相关文章
- P1251 餐巾计划问题
P1251 餐巾计划问题 题目描述 一个餐厅在相继的 N 天里,每天需用的餐巾数不尽相同.假设第 iii 天需要 rir_iri块餐巾( i=1,2,...,N).餐厅可以购买新的餐巾,每块餐巾的费 ...
- LibreOJ #6008. 「网络流 24 题」餐巾计划 最小费用最大流 建图
#6008. 「网络流 24 题」餐巾计划 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据 题目描述 ...
- Libre 6008 「网络流 24 题」餐巾计划 (网络流,最小费用最大流)
Libre 6008 「网络流 24 题」餐巾计划 (网络流,最小费用最大流) Description 一个餐厅在相继的N天里,第i天需要Ri块餐巾(i=l,2,-,N).餐厅可以从三种途径获得餐巾. ...
- 洛谷 P1251 餐巾计划问题(线性规划网络优化)【费用流】
(题外话:心塞...大部分时间都在debug,拆点忘记加N,总边数算错,数据类型标错,字母写错......) 题目链接:https://www.luogu.org/problemnew/show/P1 ...
- BZOJ1229 & 洛谷2917:[USACO2008 NOV]toy 玩具 & 洛谷4480:[BJWC2018]餐巾计划问题——题解
标题很长emmm…… [USACO2008 NOV]toy 玩具 https://www.luogu.org/problemnew/show/P2917 https://www.lydsy.com/J ...
- 初识费用流 模板(spfa+slf优化) 餐巾计划问题
今天学习了最小费用最大流,是网络流算法之一.可以对于一个每条边有一个容量和一个费用(即每单位流的消耗)的图指定一个源点和汇点,求在从源点到汇点的流量最大的前提下的最小费用. 这里讲一种最基础也是最好掌 ...
- AC日记——餐巾计划问题 洛谷 P1084
餐巾计划问题 思路: 氧气优化水过: 代码: #include <bits/stdc++.h> using namespace std; #define maxn 4005 #define ...
- LOJ #6008. 「网络流 24 题」餐巾计划
#6008. 「网络流 24 题」餐巾计划 题目描述 一个餐厅在相继的 n nn 天里,每天需用的餐巾数不尽相同.假设第 i ii 天需要 ri r_iri 块餐巾.餐厅可以购买新的餐巾,每块餐 ...
- [luogu_P1251][LOJ#6008]「网络流 24 题」餐巾计划
[luogu_P1251][LOJ#6008]「网络流 24 题」餐巾计划 试题描述 一个餐厅在相继的 \(N\) 天里,第 \(i\) 天需要 \(R_i\) 块餐巾 \((i=l,2,-,N)\) ...
随机推荐
- 蓝桥杯-历届试题 剪格子(dfs)
历届试题 剪格子 时间限制:1.0s 内存限制:256.0MB 问题描述 如下图所示,3 x 3 的格子中填写了一些整数. +--*--+--+|10* 1|52|+--**** ...
- POJ 2217 LCS(后缀数组)
Secretary Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 1655 Accepted: 671 Descript ...
- Myeclipse代码格式化的样式和保存自动格式化
第一种方法:下载格式化代码样式文件,参考这位老兄的方法(包含了保存自动格式化):http://blog.csdn.net/u010028869/article/details/49780515 下 ...
- 快速登录机器&数据库
本文来自网易云社区. 作者:盛国存 背景 我们日常在使用ApiDoc维护管理api文档,提高了api文档的整体维护性.但在老旧接口中,补充接口注解无疑是一次繁重的体力劳动.仔细查看,大多数接口的格式 ...
- runtime怎么添加属性、方法等
ivar表示成员变量 class_addIvar class_addMethod class_addProperty class_addProtocol class_replaceProperty
- 《Cracking the Coding Interview》——第18章:难题——题目12
2014-04-29 04:36 题目:最大子数组和的二位扩展:最大子矩阵和. 解法:一个维度上进行枚举,复杂度O(n^2):另一个维度执行最大子数组和算法,复杂度O(n).总体时间复杂度为O(n^3 ...
- CentOS6/7-防火墙管理
#CentOS6 #开放端口运行外部访问(不指定源IP) iptables -I INPUT -p tcp --dport -j ACCEPT iptables -I INPUT -p tcp --d ...
- 【志银】nginx_php_mysql_phpMyAdmin配置(Windows)
✄更新中... 更新日期:2018.11.22 ★版本说明+快捷下载(官网) nginx nginx-1.14.1 http://nginx.org/download/nginx-1.14.1. ...
- 【现代程序设计】homework-02
迟交了这么久,一定是0分了.可是我再怎么挣扎,还是不会.交了一维和二维的,这里说说思路吧.. 对于二维的情况,主要的思路就是将二维数组求矩形最大子数组的情况转化为一维的情况.因为所求的是矩形,我们就可 ...
- 在python中如何比较两个float类型的数据是否相等
奇怪的现象 前几天跟同事聊起来,在计算机内部float比较是很坑爹的事情.比方说,0.1+0.2得到的结果竟然不是0.3? >>> 0.1+0.2 0.300000000000000 ...