【BZOJ2466】[中山市选2009]树 树形DP
【BZOJ2466】[中山市选2009]树
Description
图论中的树为一个无环的无向图。给定一棵树,每个节点有一盏指示灯和一个按钮。如果节点的按扭被按了,那么该节点的灯会从熄灭变为点亮(当按之前是熄灭的),或者从点亮到熄灭(当按之前是点亮的)。并且该节点的直接邻居也发生同样的变化。
开始的时候,所有的指示灯都是熄灭的。请编程计算最少要按多少次按钮,才能让所有节点的指示灯变为点亮状态。
Input
输入文件有多组数据。
输入第一行包含一个整数n,表示树的节点数目。每个节点的编号从1到n。
输入接下来的n – 1行,每一行包含两个整数x,y,表示节点x和y之间有一条无向边。
当输入n为0时,表示输入结束。
Output
Sample Input
1 2
1 3
0
Sample Output
HINT
对于100%的数据,满足1 <= n <=100。
题解:明明O(n)就可以做的题看到网上那么多用高斯消元做的,还要枚举自由元,我就很不理解啊。
先设f[x][0/1],g[x][0/1]这两个东西,它的意义是:f->摁x,g->不摁x,0->x不亮,1->x亮。所需要最少按多少次,然后就可以转移啦!从这几个角度入手列DP方程可能会快一些:
1.如果摁x,那么x的儿子都不亮;如果不摁x,那么x的儿子都要亮
2.如果x发亮,那么它和它的儿子中一定有奇数个点摁了;如果x不亮,那么它和它的儿子中一定有偶数个点摁了。
其实DP方程也不是那么繁琐~
注意:极大值不要开得太大!因为可能连续好多个状态都是不合法的,它们加起来就会爆~
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
int n,cnt;
int to[210],next[210],head[110];
int f[110][2],g[110][2];
//f摁,g不摁,0不亮,1亮
void dfs(int x,int fa)
{
int i,f0,f1,g0,g1;
g[x][1]=f[x][0]=n+1,f[x][1]=1,g[x][0]=0;
for(i=head[x];i!=-1;i=next[i])
{
if(to[i]==fa) continue;
dfs(to[i],x);
f0=f[x][0],f1=f[x][1],g0=g[x][0],g1=g[x][1];
f[x][0]=min(f1+f[to[i]][0],f0+g[to[i]][0]);
f[x][1]=min(f0+f[to[i]][0],f1+g[to[i]][0]);
g[x][0]=min(g1+f[to[i]][1],g0+g[to[i]][1]);
g[x][1]=min(g0+f[to[i]][1],g1+g[to[i]][1]);
}
}
void add(int a,int b)
{
to[cnt]=b,next[cnt]=head[a],head[a]=cnt++;
}
int main()
{
while(1)
{
scanf("%d",&n),cnt=0;
if(!n) return 0;
int i,a,b;
memset(head,-1,sizeof(head));
for(i=1;i<n;i++) scanf("%d%d",&a,&b),add(a,b),add(b,a);
dfs(1,0);
printf("%d\n",min(f[1][1],g[1][1]));
}
}
【BZOJ2466】[中山市选2009]树 树形DP的更多相关文章
- [bzoj2466][中山市选2009]树_树形dp
树 bzoj-2466 中山市选-2009 题目大意:给定一棵树,每一个点有一个按钮和一个灯泡.如果按下一个点的按钮那么和这个点直接相连的点包括这个点的灯泡的状态会改变.如果是点亮就会变成熄灭,如果 ...
- bzoj2466: [中山市选2009]树
同上一题.(应该可以树形dp,然而我不会... #include<cstdio> #include<cstring> #include<iostream> #inc ...
- 【dfs】【高斯消元】【异或方程组】bzoj1770 [Usaco2009 Nov]lights 燈 / bzoj2466 [中山市选2009]树
经典的开关灯问题. 高斯消元后矩阵对角线B[i][i]若是0,则第i个未知数是自由元(S个),它们可以任意取值,而让非自由元顺应它们,得到2S组解. 枚举自由元取0/1,最终得到最优解. 不知为何正着 ...
- BZOJ 2466: [中山市选2009]树( 高斯消元 )
高斯消元解异或方程组...然后对自由元进行暴搜.树形dp应该也是可以的... ------------------------------------------------------------- ...
- BZOJ 2466: [中山市选2009]树
Sol 树形DP. 听说有非常神奇的高斯消元的做法...orz... 然而我只会 \(O(n)\) 的树形DP. 首先一个点的状态只于他的父节点和子树有关,跟他 子树的子树 和 父亲的父亲 都没有任何 ...
- BZOJ 2466 [中山市选2009]树(高斯消元)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2466 [题目大意] 给定一棵树,每个节点有一盏指示灯和一个按钮.如果节点的按扭被按了, ...
- 【BZOJ】2466: [中山市选2009]树 高斯消元解异或方程组
[题意]给定一棵树的灯,按一次x改变与x距离<=1的点的状态,求全0到全1的最少次数.n<=100. [算法]高斯消元解异或方程组 [题解]设f[i]=0/1表示是否按第i个点的按钮,根据 ...
- BZOJ 2466 中山市选2009 树 高斯消元+暴力
题目大意:树上拉灯游戏 高斯消元解异或方程组,对于全部的自由元暴力2^n枚举状态,代入计算 这做法真是一点也不优雅... #include <cstdio> #include <cs ...
- 洛谷 P1453 城市环路 ( 基环树树形dp )
题目链接 题目背景 一座城市,往往会被人们划分为几个区域,例如住宅区.商业区.工业区等等.B市就被分为了以下的两个区域--城市中心和城市郊区.在着这两个区域的中间是一条围绕B市的环路,环路之内便是B市 ...
随机推荐
- scala,import test._ ; import test.{ClassA,ClassB}
在scala中,*不是通配符,下斜杠“_”才是通配符.因此当使用某个package所有的类时,直接使用:import test._:使用某几个时,直接使用:import test.{ClassA,Cl ...
- Sql Server 表分区(转)
什么是表分区 一般情况下,我们建立数据库表时,表数据都存放在一个文件里. 但是如果是分区表的话,表数据就会按照你指定的规则分放到不同的文件里,把一个大的数据文件拆分为多个小文件,还可以把这些小文件放在 ...
- Layer 初始
Layer 初始 介绍:很不错的一个弹出框解决方案 丰富多样的Web弹出层组件,可轻松实现Alert/Confirm/Prompt/普通提示/页面区块/iframe/tips等等几乎所有的弹出交互.目 ...
- react-native 自定义 TabBar
1.首先补充一下以前的写法 App.js /** * 入口文件 */ import React, {Component} from 'react'; import { AppRegistry, Sty ...
- 渐进式 JPEG (Progressive JPEG)来提升用户体验
1.概述 jpg格式分为:Baseline JPEG(标准型)和Progressive JPEG(渐进式).两种格式有相同尺寸以及图像数据,扩展名也是相同的,唯一的区别是二者显示的方式不同. Base ...
- C语言 | 基础知识点笔记
函数 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ...
- MQTT--mosquitto使用详解
mosquitto_pub(发布)的用法 用法: mosquitto_pub [-d] [-h hostname] [-i client_id] [-I client id prefix] [-p p ...
- C/C++ 内存管理总结
C内存管理 存储时: 执行程序在存储时(没有调入到内存)分为代码区(text).数据区(data)和未初始化数据区(bss)3个部分. 1 代码区(text segment) 存放CPU执行的机器指令 ...
- docker教程之从一头雾水到不一头雾水(3)
本文主要是介绍Docker容器的相关内容 容器创建 我们已经知道,镜像是只读的,而基于镜像创建出来的容器是可读写的,所以,一般我们实际中,会经常使用对应镜像创建容器并且使用这些容器.同样,如果我们想要 ...
- windows下忘记mysql超级管理员rootpassword的解决的方法
今天帮一个朋友找回了MYSQL的超级管理员ROOTpassword.開始输入命令的时候少打了个"点"害的折腾了几个小时.最终攻克了,写个教程,方便以后使用! 假设你是server是 ...