【BZOJ2466】[中山市选2009]树

Description

图论中的树为一个无环的无向图。给定一棵树,每个节点有一盏指示灯和一个按钮。如果节点的按扭被按了,那么该节点的灯会从熄灭变为点亮(当按之前是熄灭的),或者从点亮到熄灭(当按之前是点亮的)。并且该节点的直接邻居也发生同样的变化。
 开始的时候,所有的指示灯都是熄灭的。请编程计算最少要按多少次按钮,才能让所有节点的指示灯变为点亮状态。

Input

输入文件有多组数据。
 输入第一行包含一个整数n,表示树的节点数目。每个节点的编号从1到n。 
 输入接下来的n – 1行,每一行包含两个整数x,y,表示节点x和y之间有一条无向边。
 当输入n为0时,表示输入结束。

Output

对于每组数据,输出最少要按多少次按钮,才能让所有节点的指示灯变为点亮状态。每一组数据独占一行。

Sample Input

3
1 2
1 3
0

Sample Output

1

HINT

对于100%的数据,满足1 <= n <=100。

题解:明明O(n)就可以做的题看到网上那么多用高斯消元做的,还要枚举自由元,我就很不理解啊。

先设f[x][0/1],g[x][0/1]这两个东西,它的意义是:f->摁x,g->不摁x,0->x不亮,1->x亮。所需要最少按多少次,然后就可以转移啦!从这几个角度入手列DP方程可能会快一些:

1.如果摁x,那么x的儿子都不亮;如果不摁x,那么x的儿子都要亮
2.如果x发亮,那么它和它的儿子中一定有奇数个点摁了;如果x不亮,那么它和它的儿子中一定有偶数个点摁了。

其实DP方程也不是那么繁琐~

注意:极大值不要开得太大!因为可能连续好多个状态都是不合法的,它们加起来就会爆~

#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
int n,cnt;
int to[210],next[210],head[110];
int f[110][2],g[110][2];
//f摁,g不摁,0不亮,1亮
void dfs(int x,int fa)
{
int i,f0,f1,g0,g1;
g[x][1]=f[x][0]=n+1,f[x][1]=1,g[x][0]=0;
for(i=head[x];i!=-1;i=next[i])
{
if(to[i]==fa) continue;
dfs(to[i],x);
f0=f[x][0],f1=f[x][1],g0=g[x][0],g1=g[x][1];
f[x][0]=min(f1+f[to[i]][0],f0+g[to[i]][0]);
f[x][1]=min(f0+f[to[i]][0],f1+g[to[i]][0]);
g[x][0]=min(g1+f[to[i]][1],g0+g[to[i]][1]);
g[x][1]=min(g0+f[to[i]][1],g1+g[to[i]][1]);
}
}
void add(int a,int b)
{
to[cnt]=b,next[cnt]=head[a],head[a]=cnt++;
}
int main()
{
while(1)
{
scanf("%d",&n),cnt=0;
if(!n) return 0;
int i,a,b;
memset(head,-1,sizeof(head));
for(i=1;i<n;i++) scanf("%d%d",&a,&b),add(a,b),add(b,a);
dfs(1,0);
printf("%d\n",min(f[1][1],g[1][1]));
}
}

【BZOJ2466】[中山市选2009]树 树形DP的更多相关文章

  1. [bzoj2466][中山市选2009]树_树形dp

    树  bzoj-2466 中山市选-2009 题目大意:给定一棵树,每一个点有一个按钮和一个灯泡.如果按下一个点的按钮那么和这个点直接相连的点包括这个点的灯泡的状态会改变.如果是点亮就会变成熄灭,如果 ...

  2. bzoj2466: [中山市选2009]树

    同上一题.(应该可以树形dp,然而我不会... #include<cstdio> #include<cstring> #include<iostream> #inc ...

  3. 【dfs】【高斯消元】【异或方程组】bzoj1770 [Usaco2009 Nov]lights 燈 / bzoj2466 [中山市选2009]树

    经典的开关灯问题. 高斯消元后矩阵对角线B[i][i]若是0,则第i个未知数是自由元(S个),它们可以任意取值,而让非自由元顺应它们,得到2S组解. 枚举自由元取0/1,最终得到最优解. 不知为何正着 ...

  4. BZOJ 2466: [中山市选2009]树( 高斯消元 )

    高斯消元解异或方程组...然后对自由元进行暴搜.树形dp应该也是可以的... ------------------------------------------------------------- ...

  5. BZOJ 2466: [中山市选2009]树

    Sol 树形DP. 听说有非常神奇的高斯消元的做法...orz... 然而我只会 \(O(n)\) 的树形DP. 首先一个点的状态只于他的父节点和子树有关,跟他 子树的子树 和 父亲的父亲 都没有任何 ...

  6. BZOJ 2466 [中山市选2009]树(高斯消元)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2466 [题目大意] 给定一棵树,每个节点有一盏指示灯和一个按钮.如果节点的按扭被按了, ...

  7. 【BZOJ】2466: [中山市选2009]树 高斯消元解异或方程组

    [题意]给定一棵树的灯,按一次x改变与x距离<=1的点的状态,求全0到全1的最少次数.n<=100. [算法]高斯消元解异或方程组 [题解]设f[i]=0/1表示是否按第i个点的按钮,根据 ...

  8. BZOJ 2466 中山市选2009 树 高斯消元+暴力

    题目大意:树上拉灯游戏 高斯消元解异或方程组,对于全部的自由元暴力2^n枚举状态,代入计算 这做法真是一点也不优雅... #include <cstdio> #include <cs ...

  9. 洛谷 P1453 城市环路 ( 基环树树形dp )

    题目链接 题目背景 一座城市,往往会被人们划分为几个区域,例如住宅区.商业区.工业区等等.B市就被分为了以下的两个区域--城市中心和城市郊区.在着这两个区域的中间是一条围绕B市的环路,环路之内便是B市 ...

随机推荐

  1. 在Centos7.x中安装psutil模块

    一.window10操作系统(Python 3.6开发环境)安装psutil 1.安装psutil模块 wget https://pypi.python.org/packages/source/p/p ...

  2. [WCF菜鸟]什么是WCF

    一.概述 Windows Communication Foundation(WCF)是由微软发展的一组数据通信的应用程序开发接口,可以翻译为Windows通讯接口,它是.NET框架的一部分.由 .NE ...

  3. 小计一次linux下渗透方法

    本文转自91ri 踩点 目标域名是XX.com 我们的目标是大站,所以主站一般都挺安全的,所以直接寻找二级目录,运气好时能找到一些开源的cms,运气更好点找到个dede啥的,那就…. 我们直接枚举他域 ...

  4. 【VBA】VBA编写的,将一列中相同的内容的行提取出来单独生成文件

    数据如上图所示,点击RUN后的运行结果如下: 得到该文件夹,文件夹内容如上图. 代码如下: Private Sub Command_OLIVER() Dim arr arr = Range(" ...

  5. Vue-cli + Express 构建的SPA Blog(前后分离)

    代码地址如下:http://www.demodashi.com/demo/12526.html 为什么学习并使用Vue 1.发展趋势 最近这几年的前端圈子,由于戏台一般精彩纷呈,从 MVC 到 MVV ...

  6. Burp Suite安装&环境配置&启动&浏览器设置代理

    一.简述 Burp Suite是一款使用Java编写的,用于Web安全审计与扫描套件.它集成了诸多实用的小工具以完成http请求的转发/修改/扫描等,同时这些小工具之间还可以 互相协作,在BurpSu ...

  7. scikit-learn---PCA(Principle Component Analysis)---KNN(image classifier)

    摘要:PCA为非监督分类方法,常用于数据降维.为监督分类数据预处理,本例采用PCA对人脸特征提取先做降维处理,然后使用KNN算法对图片进行分类 ##1.PCA简介 设法将原来变量重新组合成一组新的互相 ...

  8. 我最喜欢的模板jade(pug)学习和使用

    由于版权问题,现已改名pug.但无须担心,几乎没什么区别.就算依然使用jade也不会有太大影响. 慢慢迁移过渡即可 # 官网 https://pugjs.org # github https://gi ...

  9. 计算机图形学(二)输出图元_6_OpenGL曲线函数_2_中点画圆算法

    中点画圆算法        如同光栅画线算法,我们在每一个步中以单位间隔取样并确定离指定圆近期的像素位置.对于给定半径r和屏幕中心(xc,yc),能够先使用算法计算圆心在坐标原点(0, 0)的圆的像素 ...

  10. u3D大场景的优化

    首先介绍下draw call(这个东西越少你的游戏跑的越快): 在游戏中每一个被展示的独立的部分都被放在了一个特别的包中,我们称之为“描绘指令”(draw call),然后这个包传递到3D部分在屏幕上 ...