HDU5411——CRB and Puzzle——————【矩阵快速幂优化dp】
CRB and Puzzle
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 558 Accepted Submission(s): 227
There are N kinds of pieces with infinite supply.
He can assemble one piece to the right side of the previously assembled one.
For each kind of pieces, only restricted kinds can be assembled with.
How many different patterns he can assemble with at most M pieces? (Two patterns P and Q are considered different if their lengths are different or there exists an integer j such that j-th piece of P is different from corresponding piece of Q.)
The first line contains two integers N, M denoting the number of kinds of pieces and the maximum number of moves.
Then N lines follow. i-th line is described as following format.
k a1 a2 ... ak
Here k is the number of kinds which can be assembled to the right of the i-th kind. Next k integers represent each of them.
1 ≤ T ≤ 20
1 ≤ N ≤ 50
1 ≤ M ≤ 105
0 ≤ k ≤ N
1 ≤ a1 < a2 < … < ak ≤ N
possible patterns are ∅, 1, 2, 3, 1→2, 2→3
#include<bits/stdc++.h>
using namespace std;
typedef long long INT;
const int MOD=2015;
int n;
struct Matrix{
int a[52][52];
Matrix(){
memset(a,0,sizeof(a));
}
void clr(){
memset(a,0,sizeof(a));
}
void init(){
for(int i=1;i<=n;i++){
a[i][i]=1;
}
}
Matrix operator *(const Matrix & X)const{
Matrix ret;
int i,j,k;
for(int i=1;i<=n;i++){ //可以先枚举k。再用n*n去取模,能加速。
for(int j=1;j<=n;j++){
for(int k=1;k<=n;k++){
ret.a[i][j] = ret.a[i][j] +a[i][k]*X.a[k][j];
}
ret.a[i][j]%=MOD;
}
}
return ret;
}
Matrix operator +(const Matrix & X)const {
Matrix ret;
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
ret.a[i][j]=a[i][j]+X.a[i][j];
}
}
return ret;
}
};
Matrix one;
Matrix Pow(Matrix A,int x){
Matrix ret;
ret.init();
while(x){ //可以换成for加速
if(x&1)
ret=ret*A;
A=A*A;
x>>=1;
}
return ret;
}
Matrix dfs(Matrix a,int k){
if(k==1)
return a;
if(k%2){
return (dfs(a,k/2)*(Pow(a,k/2+1)+one))+Pow(a,k/2+1);
}else{
return dfs(a,k/2)*(Pow(a,k/2)+one);
}
}
int main(){
int t,m,k,a;
scanf("%d",&t);
while(t--){
Matrix trans;
trans.clr();
scanf("%d%d",&n,&m);
one.init();
for(int i=1;i<=n;++i){
scanf("%d",&k);
for(int j=1;j<=k;++j){
scanf("%d",&a);
trans.a[i][a]=1;
}
}
if(m==1){
printf("%d\n",n+1);
continue;
}
Matrix ans=dfs(trans,m-1);
INT sum=0;
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
sum+=ans.a[i][j];
}
}
sum+=n+1;
printf("%lld\n",sum%2015);
}
return 0;
}
HDU5411——CRB and Puzzle——————【矩阵快速幂优化dp】的更多相关文章
- hdu 5411 CRB and Puzzle (矩阵高速幂优化dp)
题目:http://acm.hdu.edu.cn/showproblem.php?pid=5411 题意:按题目转化的意思是,给定N和M,再给出一些边(u,v)表示u和v是连通的,问走0,1,2... ...
- 2018.10.23 bzoj1297: [SCOI2009]迷路(矩阵快速幂优化dp)
传送门 矩阵快速幂优化dp简单题. 考虑状态转移方程: f[time][u]=∑f[time−1][v]f[time][u]=\sum f[time-1][v]f[time][u]=∑f[time−1 ...
- 2018.10.22 bzoj1009: [HNOI2008]GT考试(kmp+矩阵快速幂优化dp)
传送门 f[i][j]f[i][j]f[i][j]表示从状态"匹配了前i位"转移到"匹配了前j位"的方案数. 这个东西单次是可以通过跳kmp的fail数组得到的 ...
- 2018.10.16 uoj#340. 【清华集训2017】小 Y 和恐怖的奴隶主(矩阵快速幂优化dp)
传送门 一道不错的矩阵快速幂优化dpdpdp. 设f[i][j][k][l]f[i][j][k][l]f[i][j][k][l]表示前iii轮第iii轮还有jjj个一滴血的,kkk个两滴血的,lll个 ...
- 省选模拟赛 Problem 3. count (矩阵快速幂优化DP)
Discription DarrellDarrellDarrell 在思考一道计算题. 给你一个尺寸为 1×N1 × N1×N 的长条,你可以在上面切很多刀,要求竖直地切并且且完后每块的长度都是整数. ...
- 【bzoj1009】[HNOI2008]GT考试(矩阵快速幂优化dp+kmp)
题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=1009 这道题一看数据范围:$ n<=10^9 $,显然不是数学题就是矩乘快速幂优 ...
- 2019.02.11 bzoj4818: [Sdoi2017]序列计数(矩阵快速幂优化dp)
传送门 题意简述:问有多少长度为n的序列,序列中的数都是不超过m的正整数,而且这n个数的和是p的倍数,且其中至少有一个数是质数,答案对201704082017040820170408取模(n≤1e9, ...
- 2018.10.19 NOIP模拟 硬币(矩阵快速幂优化dp)
传送门 不得不说神仙出题人DZYODZYODZYO出的题是真的妙. f[i][j][k]f[i][j][k]f[i][j][k]表示选的硬币最大面值为iii最小面值不小于jjj,总面值为kkk时的选法 ...
- LOJ2325. 「清华集训 2017」小 Y 和恐怖的奴隶主【矩阵快速幂优化DP】【倍增优化】
LINK 思路 首先是考虑怎么设计dp的状态 发现奴隶主的顺序没有影响,只有生命和个数有影响,所以就可以把每个生命值的奴隶主有多少压缩成状态就可以了 然后发现无论是什么时候一个状态到另一个状态的转移都 ...
随机推荐
- 读《JavaScript权威指南》笔记(五)
1.getComputedStyle()方法的返回值是一个CSSStyleDeclaration对象,它代表了应用在指定元素(或伪对象)上的所有样式. 2.clip style="clip: ...
- the ssl module in Python is not available错误解决
在使用pip安装pymongo的过程中报错,提示如下: $ pip3 install pymongo pip is configured with locations that require TLS ...
- 【BZOJ 3326】[Scoi2013]数数
题目描述 Fish 是一条生活在海里的鱼,有一天他很无聊,就开始数数玩.他数数玩的具体规则是: 确定数数的进制B 确定一个数数的区间[L, R] 对于[L, R] 间的每一个数,把该数视为一个字符串, ...
- oracle数据库性能
性能视图V$开头 V$SYSTEM_EVENT 正在等待的资源的系统信息 V$SESSION_EVENT 会话累计发生的等待事件 V$SESSION_WAIT 会话正在等待或者曾经等待的详细时间信息 ...
- Vue知识分享一
最近想着把之前学的Vue的知识整理一下,方便在公司和同事一起分享.我想要按照下面几个方面去说一下,我对vue的学习理解. 一.什么是VUE vue.js是一个用来开发Web界面的前端库,是很轻量级的工 ...
- C语言数据结构-循环队列的实现-初始化、销毁、清空、长度、队列头元素、插入、删除、显示操作
1.数据结构-循环队列的实现-C语言 #define MAXSIZE 100 //循环队列的存储结构 typedef struct { int* base; //基地址 int _front; //头 ...
- P4196 [CQOI2006]凸多边形 半平面交
\(\color{#0066ff}{题目描述}\) 逆时针给出n个凸多边形的顶点坐标,求它们交的面积.例如n=2时,两个凸多边形如下图: 则相交部分的面积为5.233. \(\color{#0066f ...
- Vue中添加过渡效果
最近在学习Vue这个框架,发现新的版本中,官网的文档里面说的过渡效果,如果直接粘贴官方的例子中的代码,发现并没有过渡的效果,经过反复测试之后终于知道怎么搞了,把测试的过程总结一下,以便以后回顾. 贴上 ...
- [USACO08NOV]安慰奶牛Cheering up the Cow BZOJ 1232 Kruskal
Farmer John变得非常懒, 他不想再继续维护供奶牛之间供通行的道路. 道路被用来连接N (5 <= N <= 10,000)个牧场, 牧场被连续地编号为1..N. 每一个牧场都是一 ...
- Spring----. ref的用法
ref元素是用在property中,来设置需要引用的容器管理的其它Bean. 它的用法:<ref bean|local|parent="someBean"> ...