CRB and Puzzle

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 558    Accepted Submission(s): 227

Problem Description
CRB is now playing Jigsaw Puzzle.
There are N kinds of pieces with infinite supply.
He can assemble one piece to the right side of the previously assembled one.
For each kind of pieces, only restricted kinds can be assembled with.
How many different patterns he can assemble with at most M pieces? (Two patterns P and Q are considered different if their lengths are different or there exists an integer j such that j-th piece of P is different from corresponding piece of Q.)
 
Input
There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:
The first line contains two integers N, M denoting the number of kinds of pieces and the maximum number of moves.
Then N lines follow. i-th line is described as following format.
k a1 a2 ... ak
Here k is the number of kinds which can be assembled to the right of the i-th kind. Next k integers represent each of them.
1 ≤ T ≤ 20
1 ≤ N ≤ 50
1 ≤ M ≤ 105
0 ≤ k ≤ N
1 ≤ a1 < a2 < … < ak ≤ N

 
Output
For each test case, output a single integer - number of different patterns modulo 2015.
 
Sample Input
1
3 2
1 2
1 3
0
 
Sample Output
6

Hint

possible patterns are ∅, 1, 2, 3, 1→2, 2→3

 
 
题目大意:给你t组测试数据,每组给n和m分别表示有n种商品,让你排列出最长长度为m的序列,有n行,每行有k表示该种商品后边可以放k种商品,然后后边是k个数。
 
解题思路:这道题跟嫦娥那题其实比较像,都是先用dp求出转移方程,然后套用一下矩阵快速幂加速。因为是要求最长长度为m的序列,所以就需要求出长度为0 -> m的所有结果。分奇偶。当为偶:a1+a2+a3+a4....a2K 那么(a1+a2+a3....ak)*(1+ak)   。当为奇:a1+a2+a3+a4....a2K+1 那么(a1+a2+a3....ak)*(1+ak+1)+ak+1。    这就可以用dfs去处理。
 
#include<bits/stdc++.h>
using namespace std;
typedef long long INT;
const int MOD=2015;
int n;
struct Matrix{
int a[52][52];
Matrix(){
memset(a,0,sizeof(a));
}
void clr(){
memset(a,0,sizeof(a));
}
void init(){
for(int i=1;i<=n;i++){
a[i][i]=1;
}
}
Matrix operator *(const Matrix & X)const{
Matrix ret;
int i,j,k;
for(int i=1;i<=n;i++){ //可以先枚举k。再用n*n去取模,能加速。
for(int j=1;j<=n;j++){
for(int k=1;k<=n;k++){
ret.a[i][j] = ret.a[i][j] +a[i][k]*X.a[k][j];
}
ret.a[i][j]%=MOD;
}
}
return ret;
}
Matrix operator +(const Matrix & X)const {
Matrix ret;
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
ret.a[i][j]=a[i][j]+X.a[i][j];
}
}
return ret;
}
};
Matrix one;
Matrix Pow(Matrix A,int x){
Matrix ret;
ret.init();
while(x){ //可以换成for加速
if(x&1)
ret=ret*A;
A=A*A;
x>>=1;
}
return ret;
}
Matrix dfs(Matrix a,int k){
if(k==1)
return a;
if(k%2){
return (dfs(a,k/2)*(Pow(a,k/2+1)+one))+Pow(a,k/2+1);
}else{
return dfs(a,k/2)*(Pow(a,k/2)+one);
}
}
int main(){
int t,m,k,a;
scanf("%d",&t);
while(t--){
Matrix trans;
trans.clr();
scanf("%d%d",&n,&m);
one.init();
for(int i=1;i<=n;++i){
scanf("%d",&k);
for(int j=1;j<=k;++j){
scanf("%d",&a);
trans.a[i][a]=1;
}
}
if(m==1){
printf("%d\n",n+1);
continue;
}
Matrix ans=dfs(trans,m-1);
INT sum=0;
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
sum+=ans.a[i][j];
}
}
sum+=n+1;
printf("%lld\n",sum%2015);
}
return 0;
}

  

 
 

HDU5411——CRB and Puzzle——————【矩阵快速幂优化dp】的更多相关文章

  1. hdu 5411 CRB and Puzzle (矩阵高速幂优化dp)

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=5411 题意:按题目转化的意思是,给定N和M,再给出一些边(u,v)表示u和v是连通的,问走0,1,2... ...

  2. 2018.10.23 bzoj1297: [SCOI2009]迷路(矩阵快速幂优化dp)

    传送门 矩阵快速幂优化dp简单题. 考虑状态转移方程: f[time][u]=∑f[time−1][v]f[time][u]=\sum f[time-1][v]f[time][u]=∑f[time−1 ...

  3. 2018.10.22 bzoj1009: [HNOI2008]GT考试(kmp+矩阵快速幂优化dp)

    传送门 f[i][j]f[i][j]f[i][j]表示从状态"匹配了前i位"转移到"匹配了前j位"的方案数. 这个东西单次是可以通过跳kmp的fail数组得到的 ...

  4. 2018.10.16 uoj#340. 【清华集训2017】小 Y 和恐怖的奴隶主(矩阵快速幂优化dp)

    传送门 一道不错的矩阵快速幂优化dpdpdp. 设f[i][j][k][l]f[i][j][k][l]f[i][j][k][l]表示前iii轮第iii轮还有jjj个一滴血的,kkk个两滴血的,lll个 ...

  5. 省选模拟赛 Problem 3. count (矩阵快速幂优化DP)

    Discription DarrellDarrellDarrell 在思考一道计算题. 给你一个尺寸为 1×N1 × N1×N 的长条,你可以在上面切很多刀,要求竖直地切并且且完后每块的长度都是整数. ...

  6. 【bzoj1009】[HNOI2008]GT考试(矩阵快速幂优化dp+kmp)

    题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=1009 这道题一看数据范围:$ n<=10^9 $,显然不是数学题就是矩乘快速幂优 ...

  7. 2019.02.11 bzoj4818: [Sdoi2017]序列计数(矩阵快速幂优化dp)

    传送门 题意简述:问有多少长度为n的序列,序列中的数都是不超过m的正整数,而且这n个数的和是p的倍数,且其中至少有一个数是质数,答案对201704082017040820170408取模(n≤1e9, ...

  8. 2018.10.19 NOIP模拟 硬币(矩阵快速幂优化dp)

    传送门 不得不说神仙出题人DZYODZYODZYO出的题是真的妙. f[i][j][k]f[i][j][k]f[i][j][k]表示选的硬币最大面值为iii最小面值不小于jjj,总面值为kkk时的选法 ...

  9. LOJ2325. 「清华集训 2017」小 Y 和恐怖的奴隶主【矩阵快速幂优化DP】【倍增优化】

    LINK 思路 首先是考虑怎么设计dp的状态 发现奴隶主的顺序没有影响,只有生命和个数有影响,所以就可以把每个生命值的奴隶主有多少压缩成状态就可以了 然后发现无论是什么时候一个状态到另一个状态的转移都 ...

随机推荐

  1. java 获取url及url参数解析

    java  获取url及url参数解析 一.url编码:URLEncoder.encode(userName); 二.url解码: URLDecoder.decode(userName);

  2. mybatis新增对象自动生成uuid方案

    mybatis新增对象时, 使用拦截器自动生成uuid方案有了它不再去xml中手动添加selectKey了, 生成id方案实现类自行实现, 实现IdGenerator接口便可, 主要代码由公司同事编写 ...

  3. Git入门操作

    仅学习Git的一些入门操作比较容易,平时更多地使用GitHub,不过今天我想自个搭个服务练练手.当看完一些材料合作了一些验证之后,才发现其实所谓的服务和之前的svn完全不一样了.过程记录如下: Lin ...

  4. UI界面相关

    在开发中有些控件或者控件显示的属性需要经常设置,但是又是万变不离其中,经常写着一样的代码会显得冗余,不利于阅读.这里做了简化. 1.UI控件 2.颜色管理 3.图片管理 4.字体选择

  5. vue 用axios实现调用接口下载excel

    了解的方式有两种: 1. 用a标签,href设置为后端提供的excel接口 <a href="excel接口">导出</a> 简单方便,缺点就是当有toke ...

  6. Cardinality (基数)

    名词 Cardinality:    优化器在计算成本的时候,需要从统计信息中取得数据,然后去估计每一步操作所涉及的行数,叫做Cardinality.    比如,一张表T有1000行数据,列COL1 ...

  7. 二分图【洛谷P2175】 小Z的游戏分队

    P2175 小Z的游戏分队 小Z受不了寂寞,准备举办一次DOTA比赛,为了能让ACM班全部都参加比赛,他还特制了一张DOTA地图能够支持任意多人打任意多人. 现在问题来了,怎么把这么多人分成两队?小Z ...

  8. 浅谈python web框架django2.x

    1.Django简介 Python下有多款不同的 Web 框架,Django是最有代表性的一种.许多成功的网站和APP都基于Django. Django是一个开源的Web应用框架,由Python写成. ...

  9. 设置label的文字,一行多种颜色

    调用 [self fuwenbenLabel:contentLabel FontNumber:[UIFont systemFontOfSize:] AndRange:NSMakeRange(, ) A ...

  10. visio 使用技巧汇总

    1.visio中图形旋转任意角度的方法 视图----任务窗格----大小与位置----角度 2.箭头形状 更多形状---流程图----箭头形状 3.汇制虚线框 从基本形状中拖出一个矩形,右击矩形,选择 ...