本系列文章由birdlove1987编写。转载请注明出处。

文章链接:http://blog.csdn.net/zhurui_idea/article/details/25102425

前面有一篇文章讨论过多坐标系的问题。有的人可能会问我那么多坐标系,它们之间怎么关联呢?嘿嘿~这次的内容能够为解决问题打基础奥。

线性变换基础(3D数学编程中。形式转换常常是错误的根源,所以这部分大家要多多思考,细致运算)

一般来说,方阵(就是行和列都相等的矩阵)能描写叙述随意的线性变换,所以后面我们一般用方阵来变换

事实上简单的说。线性变换就是保留直线和平行线,原点没有移动。而其它的几何性质。如长度、角度、面积和体积可能被改变

视觉的直观角度上讲,线性变换可能“拉伸”坐标系,但不会“弯曲”和“卷折”坐标系(毕竟是“线性”的变换嘛,不然可能就叫做曲线变换了)。

以下先引入一个直观的变换样例

先在单位基向量处画一个茶壶

然后我们给出一个变换矩阵

然后我们让这个茶壶的坐标按上面的矩阵经行变换

这个变换包括z轴顺时针旋转45°和不规则缩放

在讨论详细的变换之前。还必需要搞清楚。我们究竟要变换什么。在这里我们所提到的变换,其内容主要就两个:变换物体变换坐标系

变换物体,意味着变换物体上全部的点,这这点将被移动到一个新的位置,我们仍使用同一坐标系来描写叙述变换前和变换后的位置。

变换坐标。意味着物体上的点实际没有移动。我们仅仅是在另外一个坐标系中描写叙述它的位置而已。

事实上这两种变换实际上是等价的。将物体变换一个量等价于将坐标系变换一个相反的量

ps:以下我们实现的变换都是物体变换

旋转

2D中绕原点旋转的參数仅仅有一个:角度θ,它描写叙述了旋转量。(逆时针旋转常常被觉得是正方向。顺时针方向时负方向

依据几何知识我们可知旋转矩阵应该为

在3D场景中,一般都是绕轴旋转,而且在绕轴旋转θ°时,必须知道哪个方向别觉得“正”,哪个方向被觉得“负”。

在左手坐标系中定义此方向的规则为左手规则

左手坐标系
从哪里看 正方向 负方向
从轴的负端点向正端点看 逆时针 顺时针
从轴的正端点向负端点看 顺时针 逆时针

绕轴变换中最为常见的就是绕坐标轴旋转

X轴

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvemh1cnVpX2lkZWE=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center">

可得到变换矩阵

同理得到Y轴和Z轴的变换公式

Y轴

Z轴

ps:对于随意轴的旋转,可能等我们学完了平移。将随意轴平移旋转至坐标轴变换后在移后就可以。

缩放

通过比例因子K按比例变大或缩小来缩放物体。

假设在各方向应用同比例的缩放。且沿原点“扩张”物体。那么就是均匀缩放。(均匀缩放能够保持物体的角度和比例不变)

假设须要挤压或拉伸物体,在不同方向应用不同的因子就可以,这称作非均匀缩放。(非均匀缩放时,物体角度将发生变化)

ps:假设 |k|<1 ,物体将变短。假设 |k|>1,物体变长。假设 |k|=0,就是正交投影。

最简单的缩放方法是沿着每一个坐标轴应用单独的缩放因子。

2D中有两个缩放因子。。缩放矩阵为:

缩放实例

对于3D,须要添加第三个缩放因子,3D缩放矩阵:

正交投影(平行投影)(投影意味着降维操作)

有一种投影方法是在某个方向上用零作为缩放因子。这样的情况下,全部点都被拉平至垂直的轴或平面上,这样的投影称作正交投影。

最简单的投影方式是向坐标轴或平面投影。

在2D环境下。向 x 轴投影

在2D环境下,向 y 轴投影

在3D环境下,向 xy 平面投影、向xz平面投影和向yz平面投影的矩阵

正交投影效果图

镜像(反射)

镜像是一种变换。起、其作用是将物体沿直线,或平面翻折。

ps:一个物体仅仅能镜像一次,假设再次镜像物体将翻回正面,这和在原位置旋转物体的效果一样了。

在2D环境下,沿随意轴镜像的矩阵为

当中向量n为随意轴方向的单位向量,比如假设随意轴为x轴,则n=(1,0),所以关于x轴的镜像矩阵为

在3D环境下,沿随意轴镜像的矩阵为

切变

切变是一种坐标系“扭曲”变换,非均匀地拉伸它。这是一种非常少用到的变换,它也被称作扭曲变换

切变的时候角度会发生变化,可是令人惊奇的是面积体积保持不变

切变的基本实现思想是,某一坐标的乘积加到还有一个坐标上去:x' = x + sy

在2D环境下。x坐标依据坐标y以參数s控制切变方向和向量的切变矩阵

在2D环境下。y坐标依据坐标x以參数s控制切变方向和向量的切变矩阵

3D坐标中的切变矩阵两个坐标轴别还有一个坐标轴改变的矩阵

-End-

參考文献:(1)《3D Math Primer for Graphics and Game Development》

(2)百度百科

3D数学读书笔记——矩阵基础番外篇之线性变换的更多相关文章

  1. 3D数学读书笔记——矩阵基础

     本系列文章由birdlove1987编写,转载请注明出处.    文章链接:http://blog.csdn.net/zhurui_idea/article/details/24975031   矩 ...

  2. 3D数学读书笔记——矩阵进阶

    本系列文章由birdlove1987编写,转载请注明出处. 文章链接:http://blog.csdn.net/zhurui_idea/article/details/25242725 最终要学习矩阵 ...

  3. 3D数学读书笔记——多坐标系和向量基础

    本系列文章由birdlove1987编写,转载请注明出处. 文章链接: http://blog.csdn.net/zhurui_idea/article/details/24662453 第一个知识点 ...

  4. 3D数学读书笔记——四元数

    本系列文章由birdlove1987编写,转载请注明出处. 文章链接: http://blog.csdn.net/zhurui_idea/article/details/25400659 什么是四元数 ...

  5. 3D数学读书笔记——向量运算及在c++上的实现

     本系列文章由birdlove1987编写.转载请注明出处.     文章链接: http://blog.csdn.net/zhurui_idea/article/details/24782661   ...

  6. 3D数学读书笔记——3D中的方位与角位移

    本系列文章由birdlove1987编写,转载请注明出处. 文章链接: http://blog.csdn.net/zhurui_idea/article/details/25339595 方位和角位移 ...

  7. openresty 学习笔记番外篇:python的一些扩展库

    openresty 学习笔记番外篇:python的一些扩展库 要写一个可以使用的python程序还需要比如日志输出,读取配置文件,作为守护进程运行等 读取配置文件 使用自带的ConfigParser模 ...

  8. openresty 学习笔记番外篇:python访问RabbitMQ消息队列

    openresty 学习笔记番外篇:python访问RabbitMQ消息队列 python使用pika扩展库操作RabbitMQ的流程梳理. 客户端连接到消息队列服务器,打开一个channel. 客户 ...

  9. 《手把手教你》系列基础篇(八十)-java+ selenium自动化测试-框架设计基础-TestNG依赖测试-番外篇(详解教程)

    1.简介 经过前边几篇知识点的介绍,今天宏哥就在实际测试中应用一下前边所学的依赖测试.这一篇主要介绍在TestNG中一个类中有多个测试方法的时候,多个测试方法的执行顺序或者依赖关系的问题.如果不用de ...

随机推荐

  1. 怎样把本地的jar包引入到maven工程里面

    有些jar包在maven库里面查找不到,但是maven项目又有用到,此时最简单的方法就是把该jar包放到工程底下某个目录,然后在pom.xml里面配置dependency引入它. 具体如何操作呢? 假 ...

  2. 浅谈android Socket 通信及自建ServerSocket服务端常见问题

    摘  要:TCP/IP通信协议是可靠的面向连接的网络协议,它在通信两端各建立一个Socket,从而在两端形成网络虚拟链路,进而应用程序可通过可以通过虚拟链路进行通信.Java对于基于TCP协议的网络通 ...

  3. jsp的九大内置对象及EL表达式的隐含对象

    九大内置对象: request         request对象具有请求域,即完成客户端的请求之前,该对象一直有效. response       response对象具有页面作用域,即访问一个页面 ...

  4. MFC数据类型转换 _itoa atoi、atof、itoa、itow _itoa_s

    _itoa 功能:把一整数转换为字符串 用法:char * _itoa(int value, char *string, int radix); 详细解释: _itoa是英文integer to ar ...

  5. python3正则表达式符号和用法

  6. BestCoder 2nd Anniversary的前两题

    Oracle Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total Su ...

  7. CSS变量使用解析

    很早直接就了解到CSS变量相关的内容,奈何之前使用价值不高(很多主流浏览器不兼容) 最近发现主流浏览器都已经支持了这一变化 这一重要的变化,可能会让你发现,原生CSS从此变的异常强大~,下面看一下如何 ...

  8. 利用ICSharpCode进行压缩和解压缩

    说说我利用ICSharpCode进行压缩和解压缩的一些自己的一下实践过程 1:组件下载地址 参考文章:C#使用ICSharpCode.SharpZipLib.dll压缩文件夹和文件 2: 文件类 // ...

  9. Netty源码学习(三)NioEventLoop

    0. NioEventLoop简介 NioEventLoop如同它的名字,它是一个无限循环(Loop),在循环中不断处理接收到的事件(Event) 在Reactor模型中,NioEventLoop就是 ...

  10. 51nod 1432 独木舟【贪心】

    1432 独木舟 基准时间限制:1 秒 空间限制:131072 KB 分值: 10 难度:2级算法题  收藏  关注 n个人,已知每个人体重.独木舟承重固定,每只独木舟最多坐两个人,可以坐一个人或者两 ...