PTA 7-12(图) 社交网络图中结点的“重要性”计算 最短路
7-12(图) 社交网络图中结点的“重要性”计算 (30 分)
在社交网络中,个人或单位(结点)之间通过某些关系(边)联系起来。他们受到这些关系的影响,这种影响可以理解为网络中相互连接的结点之间蔓延的一种相互作用,可以增强也可以减弱。而结点根据其所处的位置不同,其在网络中体现的重要性也不尽相同。
“紧密度中心性”是用来衡量一个结点到达其它结点的“快慢”的指标,即一个有较高中心性的结点比有较低中心性的结点能够更快地(平均意义下)到达网络中的其它结点,因而在该网络的传播过程中有更重要的价值。在有N个结点的网络中,结点vi的“紧密度中心性”Cc(vi)数学上定义为vi到其余所有结点vj (j≠i) 的最短距离d(vi,vj)的平均值的倒数:
对于非连通图,所有结点的紧密度中心性都是0。
给定一个无权的无向图以及其中的一组结点,计算这组结点中每个结点的紧密度中心性。
输入格式:
输入第一行给出两个正整数N和M,其中N(≤104)是图中结点个数,顺便假设结点从1到N编号;M(≤105)是边的条数。随后的M行中,每行给出一条边的信息,即该边连接的两个结点编号,中间用空格分隔。最后一行给出需要计算紧密度中心性的这组结点的个数K(≤100)以及K个结点编号,用空格分隔。
输出格式:
按照Cc(i)=x.xx
的格式输出K个给定结点的紧密度中心性,每个输出占一行,结果保留到小数点后2位。
输入样例:
9 14
1 2
1 3
1 4
2 3
3 4
4 5
4 6
5 6
5 7
5 8
6 7
6 8
7 8
7 9
3 3 4 9
输出样例:
Cc(3)=0.47
Cc(4)=0.62
Cc(9)=0.35
思路:简单的稀疏图最短路问题,甚至不需要保存边权(均为一),dijkstra算法裸过,读入的时候判一下是不是连通图
AC代码:
#include <iostream>
#include <cstring>
#include <algorithm>
#include <queue>
#include <vector>
#include <cstdio>
#include <malloc.h> #define INF 0x3f3f3f3f
#define FRER() freopen("in.txt", "r", stdin)
#define FREW() freopen("out.txt", "w", stdout) using namespace std; const int maxn = + ; vector<int> g[maxn]; int n, m, s, u, v, vis[maxn], dis[maxn]; typedef pair<int, int> P; void dijkstra() {
memset(vis, , sizeof(vis));
memset(dis, INF, sizeof(dis));
priority_queue<P, vector<P>, greater<P> > q;
dis[s] = ;
q.push(make_pair(, s));
P tmp;
while(!q.empty()) {
tmp = q.top(); q.pop();
if(vis[tmp.second]) continue;
vis[tmp.second] = ;
for(int i = ; i < g[tmp.second].size(); ++i) {
if(tmp.first + < dis[g[tmp.second][i]]) {
dis[g[tmp.second][i]] = tmp.first + ;
q.push(make_pair(dis[g[tmp.second][i]], g[tmp.second][i]));
}
}
}
} double cal() {
double ans = ;
for(int i = ; i <= n; ++i)
ans += (double)dis[i];
return (n - ) / ans;
} int main()
{
scanf("%d %d", &n, &m);
int num = ;
while(m--) {
scanf("%d %d", &u, &v);
g[u].push_back(v);
g[v].push_back(u);
if(!vis[u]) vis[u] = , ++num;
if(!vis[v]) vis[v] = , ++num;
} bool ok = !(num == n);
scanf("%d", &m);
while(m--) {
scanf("%d", &s);
if(ok) printf("Cc(%d)=0.00\n", s);
else {
dijkstra();
printf("Cc(%d)=%.2lf\n", s, cal());
}
}
return ;
}
PTA 7-12(图) 社交网络图中结点的“重要性”计算 最短路的更多相关文章
- PTA 社交网络图中结点的“重要性”计算(30 分)
7-12 社交网络图中结点的“重要性”计算(30 分) 在社交网络中,个人或单位(结点)之间通过某些关系(边)联系起来.他们受到这些关系的影响,这种影响可以理解为网络中相互连接的结点之间蔓延的一种相互 ...
- PTA数据结构与算法题目集(中文) 7-36 社交网络图中结点的“重要性”计算 (30 分)
PTA数据结构与算法题目集(中文) 7-36 社交网络图中结点的“重要性”计算 (30 分) 7-36 社交网络图中结点的“重要性”计算 (30 分) 在社交网络中,个人或单位(结点)之间通过某 ...
- 7-10 社交网络图中结点的“重要性”计算(30 point(s)) 【并查集+BFS】
7-10 社交网络图中结点的"重要性"计算(30 point(s)) 在社交网络中,个人或单位(结点)之间通过某些关系(边)联系起来.他们受到这些关系的影响,这种影响可以理解为网络 ...
- 社交网络图中结点的“重要性”计算 (30 分) C++解法
社交网络图中结点的"重要性"计算 (30 分) 在社交网络中,个人或单位(结点)之间通过某些关系(边)联系起来.他们受到这些关系的影响,这种影响可以理解为网络中相互连接的结点之间蔓 ...
- 7-11 社交网络图中结点的“重要性”计算 (30 分)(Dijkstra算法)
题意: 思路:对每个输入的点跑一遍dijkstra算法,然后对这个点到所有点的距离求和按公式输出就可以了. (这次尝试了用数组模拟链表来做最短路问题,刷新了自己对最短路的理解) 这里构造链表的过程我 ...
- dgraph解决社交关系中的正反向查找
dgraph解决社交关系中的正反向查找 本篇介绍的是, 社交关系中的关注者与被关注者在dgraph中如何实现查找. 对dgraph的基本操作不太清楚的可以看看我之前写的博客 dgraph实现基本操作 ...
- 全世界最详细的图形化VMware中linux环境下oracle安装(二)【weber出品必属精品】
<ORACLE 10.2.05版本的升级补丁安装> 首先我们解压 $ unzip p8202632_10205_LINUX.zip 解压后我们会发现多出了个文件夹,他是:Disk1,进入D ...
- 全世界最详细的图形化VMware中linux环境下oracle安装(一)【weber出品必属精品】
安装流程:前期准备工作--->安装ORACLE软件--->安装升级补丁--->安装odbc创建数据库--->安装监听器--->安装EM <前期准备工作> 安装 ...
- 【转】一张图解析FastAdmin中的表格列表的功能
一张图解析FastAdmin中的表格列表的功能 功能描述请根据图片上的数字索引查看对应功能说明. 1.时间筛选器如果想在搜索栏使用时间区间进行搜索,则可以在JS中修改修改字段属性,如 {field: ...
随机推荐
- 我的ORM框架
任何系统的基础,都可以算是各种数据的增删改查(CRUD).最早操作数据是直接在代码里写SQL语句,后来出现了各种ORM框架.C#下的ORM框架有很多,如微软自己的Entity Framework.第三 ...
- sudo使用
/etc/sudo.conf /etc/sudoers /etc/sudoers.d/ /etc/sudo-ldap.conf /etc/sudoer sudo安全策略配置文件 Defaults re ...
- MySql 8.0.11 在win10下的zip非安装配置
在win10使用mysql8.0.11的zip包进行配置时,搜到的教程很多坑,特此总结成功配置的方法. 1.下载非安装的zip包 mysql 8.0.11 64位 2.解压zip包 将下载的zi ...
- Python模块与函数
python的程序由包(package).模块(module)和函数组成.模块是处理某一类问题的集合,模块由函数和类组成,包是由一系列模块组成的集合.包必须至少包含一个__init__.py文件,该文 ...
- GitLab-Runner 安装配置
https://docs.gitlab.com/runner/install/linux-repository.html 直接看官方教程 systemctl status gitlab-runner. ...
- MMU CPU及思想
要素: 1)CPU访问寻址地址空间: 2)内存不足以容纳所有进程数据: 3)MMU将进程数据分割,保留当前使用数据. http://baike.baidu.com/link?url=KHyp37Ysi ...
- 学习MyBatis之简单入门HelloWorld
转:https://blog.csdn.net/gaomb_1990/article/details/78299784 一.准备 Eclipse:Luna Service Release 1 (4.4 ...
- memcache 基本操作
输入 telnet localhost 11211 步骤: 1.输入 set hans 0 0 3 回车 2. 输入 123 回车 3. get hans 回车 删除操作,输入 delete h ...
- SWFUpload 参数详解
属性 类型 默认值 描述 upload_url String 处理上传文件的服务器端页面的url地址,可以是绝对地址,也可以是相对地址,当为相对地址时相对的是当前代码所在的文档地址 preserv ...
- 编写第一个OpenACC程序
原文链接 在PGI的官方网站上获得示例代码: http://www.pgroup.com/lit/samples/pgi_accelerator_examples.tar 我们的第一个例子从一个简单的 ...