2019.03.02 ZJOI2019模拟赛 解题报告
得分: \(10+0+40=50\)(\(T1\),\(T3\)只能写大暴力,\(T2\)压根不会)
\(T1\):道路建造
应该是一道比较经典的容斥题,可惜比赛时没有看出来。
由于要求最后删一条边或加一条边后得到一个欧拉回路。而反过来说,对于一个欧拉回路,我们有\(C_n^2\)种方式加边或删边使其变成一个题目中所求的合法图。
因此,我们只需求出欧拉回路图的个数,然后乘上\(C_n^2\)即为答案。
但还有一个比较麻烦的问题是,这张图必须联通。
那我们就可以先计算出所有情况数,再减去不连通的情况数即可求出连通的情况数。
设所有情况数为\(g_i\),连通的情况数为\(f_i\)。
当有\(i\)个点时,对于所有情况,我们可以计算得出这样一个式子:\(g_i=2^{C_{i-1}^2}\)。
证明:我们可以先去掉一个点,则总边数为\(C_{i-1}^2\),而由这\(i-1\)个点所构成的图便有\(2^{C_{i-1}^2}\)种情况。而对于最后一个点,我们可以用其向所有奇点连边使其变为偶点,这样就可以得到一个欧拉回路图了。
那么接下来的问题就是如何求\(f_i\)。
我们可以枚举一个\(j\)来将这\(i\)个点分为\(j\)和\(i-j\)两部分,然后强制其不连通即可得到不连通的情况数。然后用\(g_i\)减去它,就得到这样一个式子:\(f_i=g_i-\sum_{j=1}^{i-1}f_j*g_{i-j}*C_{i-1}^{j-1}\)。
最后答案自然就是\(C_n^2*f_n\)。
代码实现如下:
#include<bits/stdc++.h>
#define Tp template<typename Ty>
#define Ts template<typename Ty,typename... Ar>
#define Reg register
#define RI Reg int
#define Con const
#define CI Con int&
#define I inline
#define W while
#define N 2000
#define X 1000000007
#define Qinv(x) (Qpow(x,X-2))
#define Dec(x,y) ((x-=(y))<0&&(x+=X))
#define Qinv(x) Qpow(x,X-2)
#define C(x,y) (1LL*Fac[x]*Inv[y]%X*Inv[(x)-(y)]%X)
using namespace std;
int n,f[N+5],g[N+5],Fac[N+5],Inv[N+5];
I int Qpow(RI x,RI y) {RI res=1;W(y) y&1&&(res=1LL*res*x%X),x=1LL*x*x%X,y>>=1;return res;}//快速幂
int main()
{
freopen("road.in","r",stdin),freopen("road.out","w",stdout);
RI i,j;for(scanf("%d",&n),Fac[0]=i=1;i<=n;++i) Fac[i]=1LL*Fac[i-1]*i%X;//预处理阶乘
for(Inv[n]=Qinv(Fac[n]),i=n-1;~i;--i) Inv[i]=1LL*Inv[i+1]*(i+1)%X;//预处理阶乘逆元
for(i=1;i<=n;++i) for(f[i]=g[i]=Qpow(2,C(i-1,2)),j=1;j^i;++j) Dec(f[i],1LL*f[j]*g[i-j]%X*C(i-1,j-1)%X);//求出f[i]和g[i]
return printf("%d",1LL*C(n,2)*f[n]%X),0;//计算并输出答案
}
\(T2\):圈地游戏
待订正ing
\(T3\):组合数学
待订正ing
2019.03.02 ZJOI2019模拟赛 解题报告的更多相关文章
- 2019.03.19 ZJOI2019模拟赛 解题报告
得分: \(100+10+45=155\)(\(T1\)又是水题,\(T2\)写暴力,\(T3\)大力\(STL\)乱搞) \(T1\):哈夫曼树 首先,根据题目中给出的式子,可以发现,我们要求的其实 ...
- 2019.03.09 ZJOI2019模拟赛 解题报告
得分: \(20+0+40=60\)(\(T1\)大暴力,\(T2\)分类讨论写挂,\(T3\)分类讨论\(40\)分) \(T1\):天空碎片 一道神仙数学题,貌似需要两次使用中国剩余定理. 反正不 ...
- 2019.03.13 ZJOI2019模拟赛 解题报告
得分: \(55+12+10=77\)(\(T1\)误认为有可二分性,\(T2\)不小心把\(n\)开了\(char\),\(T3\)直接\(puts("0")\)水\(10\)分 ...
- 2019.03.14 ZJOI2019模拟赛 解题报告
得分: \(100+100+0=200\)(\(T1\)在最后\(2\)分钟写了出来,\(T2\)在最后\(10\)分钟写了出来,反而\(T3\)写了\(4\)个小时爆\(0\)) \(T1\):风王 ...
- 2019.03.15 ZJOI2019模拟赛 解题报告
得分: \(20+45+15=80\)(三题暴力全写挂...) \(T1\):Lyk Love painting 首先,不难想到二分答案然后\(DP\)验证. 设当前需验证的答案为\(x\),则一个暴 ...
- 2019.03.16 ZJOI2019模拟赛 解题报告
得分: \(100+27+20=147\)(\(T1\)巨水,\(T2,T3\)只能写暴力分) \(T1\):深邃 比较套路的一眼题,显然是一个二分+贪心,感觉就是\(NOIP2018Day1T3\) ...
- 10.30 NFLS-NOIP模拟赛 解题报告
总结:今天去了NOIP模拟赛,其实是几道USACO的经典的题目,第一题和最后一题都有思路,第二题是我一开始写了个spfa,写了一半中途发现应该是矩阵乘法,然后没做完,然后就没有然后了!第二题的暴力都没 ...
- 2018.10.26NOIP模拟赛解题报告
心路历程 预计得分:\(100 + 100 + 70\) 实际得分:\(40 + 100 + 70\) 妈妈我又挂分了qwq..T1过了大样例就没管,直到临考试结束前\(10min\)才发现大样例是假 ...
- 2018.10.17NOIP模拟赛解题报告
心路历程 预计得分:\(100 + 100 +100\) 实际得分:\(100 + 100 + 60\) 辣鸡模拟赛.. 5min切掉T1,看了一下T2 T3,感觉T3会被艹爆因为太原了.. 淦了20 ...
随机推荐
- 事物及exec
事物3要出不多讲: 1.BEGIN TRANSACTION--开启事务 2.COMMIT TRANSACTION--事务执行 3.ROLLBACK TRANSACTION--事务回滚 俩总捕捉事物的方 ...
- java web关于文件上传下载的总结
文件上传使用<form method="POST" enctype="multipart/form-data"> , 而不是默认的applica ...
- Problem09 求完数
题目:一个数如果恰好等于它的因子之和,这个数就称为"完数". 分析:例如6=1+2+3. 编程找出1000以内的所有完数. 假如整数n除以m,结果是无余数的整数,那么我们称m就是n ...
- Linux ps命令记录
ps命令:查看当前系统进程状态 ps -a 显示当前所有进程ps -ax 显示没有控制终端的进程ps -u better 查看用户better的进程ps aux|less 通过cpu和内存来 ...
- java——线程的wait()和notify()
这是一个关于生产者和消费者的线程通信的例子: package thread_test; public class PCThread { public static void main(String[] ...
- HBuilder的常用快捷键
Ctrl + d 删除整行内容 Ctrl + Shift +R 复制当前行到下一行 Ctrl + Shift +D 重新编辑 Ctrl + 方向键 当前行整行内容上移或下移 Alt + ↓ 跳转到下一 ...
- 用一层for循环初始化三维数组
][][]; ; i < * * ; i++) { a[i / ][(i / ) % ][i % ] = i; printf(, (i / ) % , i % ); // printf(&quo ...
- 工作采坑札记:2. Hadoop中MultipleInputs的使用陷阱
1. 背景 近日在一个Hadoop项目中使用MultipleInputs增加多输入文件时,发现相同路径仅会加载一次,导致后续的统计任务严重失真.本博文旨在记录异常的排查及解决方案. 2. 情景重现 ( ...
- HDU 5418——Victor and World——————【状态压缩+floyd】
Victor and World Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 262144/131072 K (Java/Other ...
- 祝高二学弟学妹AK NOIp2018!!!!!!