Tarjan在图论中的应用(二)——用Tarjan来求割点与割边
前言:\(Tarjan\)
求割点和割边建立在 \(Tarjan\)算法的基础之上,因此建议在看这篇博客之前先去学一学\(Tarjan\)。
回顾\(Tarjan\)中各个数组的定义
首先,我们来回顾一下\(Tarjan\)中各个数组的定义:
\(dfn[\) \(]\):每个点的\(dfs\)序。
\(low[\) \(]\):每个点能到达的\(dfs\)序最小的节点的\(dfs\)序。
而其他数组在求割点和割边的过程中则不太必要了。
割点
首先,我们要了解一下割点的定义:把这个点去掉之后,这个点所在的联通块就会被分成若干个联通块。
既然这样,也就是说,只要这个节点某一个子节点所到达的节点的\(dfs\)序大于等于该节点的\(dfs\)序,即它的这个子节点无法到达\(dfs\)序小于该节点的节点,就说明它是一个割点了。
而对于一个联通块第一个访问的节点,则需特判,如果它在遍历完一个节点所能遍历到的所有节点,还能找到没有被遍历过的节点,就说明它是一个割点。
代码如下:
inline void Tarjan(int x,int lst)//Tarjan求割点
{
register int i,tot=0;//tot记录访问到的子节点个数
for(dfn[x]=low[x]=++d,i=lnk[x];i;i=e[i].nxt)//枚举每一个子节点
{
if(!(e[i].to^lst)) continue;//如果这个节点是当前节点的父亲节点,就跳过
if(!dfn[e[i].to])//如果这个子节点没有被访问过
{
Tarjan(e[i].to,x),low[x]=min(low[x],low[e[i].to]),++tot;//遍历该子节点,更新low[x],并将tot加1
if(lst&&low[e[i].to]>=dfn[x]) IsCut[x]=1;//如果当前节点不是一个联通块第一个访问的节点,且当前节点的这个子节点dfs序大于等于当前节点的dfs序,那么就说明当前节点是割点
}
else low[x]=min(low[x],dfn[e[i].to]);//更新low[x]
}
if(!lst&&tot>=2) IsCut[x]=1;//如果当前节点是联通块第一个节点,且访问到的子节点个数≥2,那么就说明当前节点是割点
}
割边
还是一样,先了解一下割边的定义:把这条边去掉之后,这条边所在的联通块就会被分成若干个联通块,看起来与割点的定义很像。
因此,如果一条边所连接的两个节点,若其中\(dfs\)序较大的节点不经过这条边所能到达的\(dfs\)序最小的节点大于这条边连接的点中\(dfs\)序较小的节点,就说明这条边是一条割边。
不过还要注意判重的情况,要注意如果有两条相同的边,那么这两条边肯定都不是割边。
代码如下:
inline void Tarjan(int x,int lst)//Tarjan求割边
{
register int i,flag=1;//flag记录当前节点是否第一次访问它的父亲节点
for(dfn[x]=low[x]=++d,vis[Stack[++top]=x]=1,i=lnk[x];i;i=e[i].nxt)//枚举每一个子节点
{
if(flag&&!(e[i].to^lst)) {flag=0;continue;}//如果是第一次访问父亲节点,就将flag标记为0,并跳过这条边
if(!dfn[e[i].to])//如果这个子节点没有被访问过
{
Tarjan(e[i].to,x),low[x]=min(low[x],low[e[i].to]);//访问这个节点,并更新low[x]
if(low[e[i].to]>low[x]) IsBridge[i]=1;//如果这条边连向的另一个节点所能到达的dfs序最小的节点大于该节点的dfs序,就说明这条边是割边
}
else if(vis[e[i].to]) low[x]=min(low[x],dfn[e[i].to]);//否则,更新low[x]
}
}
Tarjan在图论中的应用(二)——用Tarjan来求割点与割边的更多相关文章
- Tarjan 强连通分量 及 双联通分量(求割点,割边)
Tarjan 强连通分量 及 双联通分量(求割点,割边) 众所周知,Tarjan的三大算法分别为 (1) 有向图的强联通分量 (2) 无向图的双联通分量(求割点,桥) ...
- tarjan求割点与割边
tarjan求割点与割边 洛谷P3388 [模板]割点(割顶) 割点 解题思路: 求割点和割点数量模版,对于(u,v)如果low[v]>=dfn[u]那么u为割点,特判根结点,若根结点子树有超过 ...
- Tarjan 算法求割点、 割边、 强联通分量
Tarjan算法是一个基于dfs的搜索算法, 可以在O(N+M)的复杂度内求出图的割点.割边和强联通分量等信息. https://www.cnblogs.com/shadowland/p/587225 ...
- Tarjan在图论中的应用(一)——用Tarjan来实现强连通分量缩点
前言 \(Tarjan\)是一个著名的将强连通分量缩点的算法. 大致思路 它的大致思路就是在图上每个联通块中任意选一个点开始进行\(Tarjan\)操作(依据:强连通分量中的点可以两两到达,因此从任意 ...
- Tarjan在图论中的应用(三)——用Tarjan来求解2-SAT
前言 \(2-SAT\)的解法不止一种(例如暴搜?),但最高效的应该还是\(Tarjan\). 说来其实我早就写过用\(Tarjan\)求解\(2-SAT\)的题目了(就是这道题:[2019.8.14 ...
- hihoCoder 1183 连通性一·割边与割点(Tarjan求割点与割边)
#1183 : 连通性一·割边与割点 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 还记得上次小Hi和小Ho学校被黑客攻击的事情么,那一次攻击最后造成了学校网络数据的丢 ...
- 【模拟7.25】回家(tarjan V-DCC点双连通分量的求法及缩点 求割点)模板题
作为一道板子题放在第二题令人身心愉悦,不到一个小时码完连对拍都没打. 关于tarjan割点的注意事项: 1.在该板子中我们求的是V-DCC,而不是缩点,V-DCC最少有两个点组成,表示出掉一个块里的任 ...
- POJ 1144 Network(tarjan 求割点个数)
Network Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 17016 Accepted: 7635 Descript ...
- 利用Tarjan算法解决(LCA)二叉搜索树的最近公共祖先问题——数据结构
相关知识:(来自百度百科) LCA(Least Common Ancestors) 即最近公共祖先,是指在有根树中,找出某两个结点u和v最近的公共祖先. 例如: 1和7的最近公共祖先为5: 1和5的 ...
随机推荐
- 不重新编译安装php模块的方法
如果你有下面两种经历: 如果php通过源码安装(php7),如果后来需要开启某个自带模块(例如ldap,snmp等),通常需要重新编译. 另外一些安装php模块的经历,例如redis,swoole,y ...
- Eclipse中Android公共库的正确建立及调用方法(转)
转自http://www.cnblogs.com/SkyD/archive/2011/09/01/2161502.html 引言 之前一直头痛于没有办法在多个程序中共享资源,用作公共类库的方法也是使用 ...
- ios 支付宝支付集成
支付宝支付: 下载官方demo,把需要的framwork下载下来,在自己的工程中,新建文件夹,然后全部塞进去,到build phases中把需要的全部导入,其中xcode7以上需要多导入两个.a文件, ...
- I/O重定向和管道
一:I/O设备 I/O(Input/Output),即输入/输出,通常指数据在内部存储器和外部存储器或其他周边设备之间的输入和输出. 标准输入(STDIN):0 默认接受来自键盘的输入 标准输出(ST ...
- 关于unique去重
嗯.... unique这个东西也是一个冷门知识..... 但是在有时候它还是比较好用的东西... 下面就在详细代码中看unique是如何实际应用的....它主要是用于数组去重 #include< ...
- Python Unittest - 根据不同测试环境跳过用例详解
本文章会讲述以下几个内容: 1.Unittest 如何跳过用例 2.如何使用sys.argv 3.自动化测试项目中如何一套代码多套环境运行 一.Unittest跳过用例 @unittest.skip( ...
- POJ 1061青蛙的约会。求解(x+mT)%L=(y+nT)%L的最小步数T。
因为是同余,所以就是(x+mT)%L-(y+nT)%L=0.可以写成(x-y+(m-n)T)%L=0.就是这个数是L的倍数啦.那么我可以这样x-y+(m-n)T + Ls = 0.就可以了,s可正可负 ...
- (转)Linux系统重要子目录及内容小结
Linux系统重要子目录及内容小结 原文:http://blog.csdn.net/xiaolong361/article/details/52318834 1.首先来介绍下根目录下的一些重要目录含义 ...
- IDEA/Eclipse安装 Alibaba Java Coding Guidelines 插件
为了让开发者更加方便.并且达到快速规范代码格式的目的并实行起来,阿里巴巴基于<阿里巴巴Java开发规约>手册内容,研发了一套自动化的IDE检测插件(IDEA.Eclipse).它就是Ali ...
- 机器学习框架ML.NET学习笔记【3】文本特征分析
一.要解决的问题 问题:常常一些单位或组织召开会议时需要录入会议记录,我们需要通过机器学习对用户输入的文本内容进行自动评判,合格或不合格.(同样的问题还类似垃圾短信检测.工作日志质量分析等.) 处理思 ...