Solution -「洛谷 P5176」公约数
Description
Link.
求
\]
Solution
考虑把 \(i,j,k\) 分别唯一分解,显然 \(ij,jk,ik\) 并没有增加唯一分解后使用的质数数量,仅仅改变了指数。再考虑 \(\gcd\) 的本质就是唯一分解后对指数取 \(\min\) 的乘积结果。钦定研究一个质因数,设 \(i,j,k\) 该质因数的指数分别为 \(a,b,c\),则 \(\gcd\) 上该位的指数为 \(\min(a,b,c)\),我们做这样一个容斥:\(\min(a+b,b+c,a+c)=\min(a,b)+\min(a,c)+\min(b,c)-\min(a,b,c)\)。证明不妨设 \(a<b<c\) 即证。
那么有:
\begin{aligned}
&=\sum_{i=1}^{n}\sum_{j=1}^{m}\sum_{k=1}^{p}\frac{(i,j)(i,k)(j,k)}{(i,j,k)}(i,j,k)\frac{(i,j)^{2}+(i,k)^{2}+(j,k)^{2}}{(i,j)(i,k)(j,k)} \\
&=\sum_{i=1}^{n}\sum_{j=1}^{m}\sum_{k=1}^{p}(i,j)^{2}+(i,k)^{2}+(j,k)^{2} \\
\end{aligned}
\]
注意到三个部分并无本质不同,我们设 \(F(n,m,p)=p\sum_{i=1}^{n}\sum_{j=1}^{m}(i,j)^{2}\),答案即 \(F(n,m,p)+F(n,p,m)+F(m,p,n)\)。接下来推导 \(F\),同时钦定 \(n<m\):
\begin{aligned}
&=\sum_{d=1}^{n}\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{d}\rfloor}d^{2}[(i,j)=1] \\
&=\sum_{d=1}^{n}d^{2}\lfloor\frac{n}{d}\rfloor\lfloor\frac{m}{d}\rfloor\sum_{t\mid(i,j)}\mu(t) \\
&=\sum_{T=1}^{n}\sum_{d\mid T}d^{2}\lfloor\frac{n}{d}\rfloor\lfloor\frac{m}{d}\rfloor\mu(\frac{T}{d}) \\
\end{aligned}
\]
令 \(f(x)=\sum_{d|x}d^{2}\mu(\frac{x}{d})\),显然是个积性函数,\(f(p)=p^{2}-1\),不需要 \(k\) 次方就能做了欸。
#include<bits/stdc++.h>
#define con(typ) const typ
typedef long long ll;
template<typename T>void sf(T &x){x=0;T f=0;char c=getchar();for(;c<'0'||c>'9';c=getchar())if(c=='-')f=1;for(;c>='0'&&c<='9';c=getchar())x=(x<<3)+(x<<1)+(c^'0');if(f)x=-x;}
template<typename T>void pf(T x,char l='\n'){static int s[100],t;if(x<0)putchar('-'),x=-x;do s[++t]=x%10,x/=10;while(x);while(t)putchar(s[t--]^'0');putchar(l);}
con(int) MOD=1e9+7;
int T,n,m,p;
ll mu[20000010],f[20000010],tag[20000010],prime[20000010],cnt;
void makePrime(int l)
{
mu[1]=f[1]=1;
for(ll i=2;i<=l;++i)
{
if(!tag[i]) prime[++cnt]=i,f[i]=(i*i%MOD-1+MOD)%MOD;
for(int j=1;j<=cnt && prime[j]*i<=l;++j)
{
tag[i*prime[j]]=1;
if(i%prime[j]) f[i*prime[j]]=f[i]*f[prime[j]]%MOD;
else
{
f[i*prime[j]]=f[i]*prime[j]%MOD*prime[j]%MOD;
break;
}
}
}
for(int i=1;i<=l;++i) f[i]+=f[i-1],f[i]%=MOD;
}
ll cal(int n,int m,int p)
{
if(n>m) n^=m^=n^=m;
ll res=0;
for(int l=1,r;l<=n;l=r+1)
{
r=std::min(n/(n/l),m/(m/l));
res+=(f[r]-f[l-1]+MOD)*(n/l)%MOD*(m/l)%MOD;
res%=MOD;
}
return (res*p%MOD+MOD)%MOD;
}
int main()
{
makePrime(2e7);
for(sf(T);T;--T) sf(n),sf(m),sf(p),pf(((cal(n,m,p)+cal(n,p,m)%MOD)+cal(m,p,n))%MOD);
return 0;
}
Solution -「洛谷 P5176」公约数的更多相关文章
- Solution -「洛谷 P4372」Out of Sorts P
\(\mathcal{Description}\) OurOJ & 洛谷 P4372(几乎一致) 设计一个排序算法,设现在对 \(\{a_n\}\) 中 \([l,r]\) 内的元素排 ...
- Note/Solution -「洛谷 P5158」「模板」多项式快速插值
\(\mathcal{Description}\) Link. 给定 \(n\) 个点 \((x_i,y_i)\),求一个不超过 \(n-1\) 次的多项式 \(f(x)\),使得 \(f(x ...
- Solution -「洛谷 P4198」楼房重建
\(\mathcal{Description}\) Link. 给定点集 \(\{P_n\}\),\(P_i=(i,h_i)\),\(m\) 次修改,每次修改某个 \(h_i\),在每次修改后 ...
- Solution -「洛谷 P6577」「模板」二分图最大权完美匹配
\(\mathcal{Description}\) Link. 给定二分图 \(G=(V=X\cup Y,E)\),\(|X|=|Y|=n\),边 \((u,v)\in E\) 有权 \(w( ...
- Solution -「洛谷 P6021」洪水
\(\mathcal{Description}\) Link. 给定一棵 \(n\) 个点的带点权树,删除 \(u\) 点的代价是该点点权 \(a_u\).\(m\) 次操作: 修改单点点权. ...
- Solution -「洛谷 P4719」「模板」"动态 DP" & 动态树分治
\(\mathcal{Description}\) Link. 给定一棵 \(n\) 个结点的带权树,\(m\) 次单点点权修改,求出每次修改后的带权最大独立集. \(n,m\le10^5 ...
- Solution -「洛谷 P5236」「模板」静态仙人掌
\(\mathcal{Description}\) Link. 给定一个 \(n\) 个点 \(m\) 条边的仙人掌,\(q\) 组询问两点最短路. \(n,q\le10^4\),\(m\ ...
- Solution -「洛谷 P4320」道路相遇
\(\mathcal{Description}\) Link. 给定一个 \(n\) 个点 \(m\) 条边的连通无向图,并给出 \(q\) 个点对 \((u,v)\),询问 \(u\) 到 ...
- Solution -「洛谷 P5827」边双连通图计数
\(\mathcal{Description}\) link. 求包含 \(n\) 个点的边双连通图的个数. \(n\le10^5\). \(\mathcal{Solution}\) ...
- Solution -「洛谷 P5827」点双连通图计数
\(\mathcal{Description}\) link. 求有 \(n\) 个结点的点双连通图的个数,对 \(998244353\) 取模. \(n\le10^5\). \(\mat ...
随机推荐
- hw面试常见中间件漏洞
apache漏洞 未知扩展名解析漏洞 漏洞原理:Apache对文件名后缀的识别是从后往前进行的,当遇到不认识的后缀时,继续往前,直到识别 影响版本:使用module模式与php结合的所有版本,apac ...
- windows10环境下安装RabbitMQ以及延时插件(图文)
安装转载:https://www.cnblogs.com/saryli/p/9729591.html 插件转载:https://blog.csdn.net/nbdclw/article/details ...
- Python time strftime() 方法的使用
1.描述 strftime() 用于格式化时间,返回以可读字符串表示的时间,格式自定义. 2.说明 python中日期和时间的格式化符号有很多,下面列举常用的符号: %y 两位数的年份表示(00-9 ...
- CAPL 脚本对信号收发的判断
在CAPL脚本中,您可以使用条件语句和CAN消息的收发函数来进行信号的判断和处理.以下是一些常见的CAPL脚本语句用于信号收发的判断: 1.判断消息是否收到 on message can_messag ...
- 【C#/.NET】xUnit和Moq实现TDD
目录 前置条件 Moq xUnit TDD 实践 创建项目 红灯 绿灯 重构 单元测试一些最佳实践 总结 前置条件 Moq 安装Moq包 Install-Package Moq Moq是一个Mo ...
- 全面解析PCIDSS中的设备访问控制和网络访问控制
目录 1. 引言 2. 技术原理及概念 3. 实现步骤与流程 4. 应用示例与代码实现讲解 1. 引言 PCI DSS是PCI设备安全标准(PCI DSS)的缩写,是由PCI设备制造商和PCI服务提供 ...
- VSCode隐藏一些非必要的文件
VSCode自动编译生成 .exe文件 很烦 所以要隐藏掉 文件,首选项,搜索 files.exclude 在后面添加 **/*.exe 即可
- vue3中父组件与组件之间参数传递,使用(defineProps/defineEmits),涉及属性传递,对象传递,数组传递,以及事件传递
Vue3 中子父组件之间的通信 一.父组件传递参数到子组件 采用defineProps 传递属性 父组件: <template> <div> <h1>这是父组件&l ...
- [Java基础] ==和equals比较
==对比的是栈中的值,基本数据类型是变量值,引用类型是堆中内存对象的地址 equals:object中默认也是采用==比较,通常会重写 Object public boolean equals(Obj ...
- CF1580C Train Maintenance题解
我们以 \(\sqrt m\) 为分界点来进行平衡. 设当前在进行第 \(k\) 次操作,询问 \(i\). 对于 \(x_i + y_i \leq \sqrt m\),可以在 \(last_{x_i ...