L2-018 多项式A除以B (25 分) (math)
这仍然是一道关于A/B的题,只不过A和B都换成了多项式。你需要计算两个多项式相除的商Q和余R,其中R的阶数必须小于B的阶数。
输入格式:
输入分两行,每行给出一个非零多项式,先给出A,再给出B。每行的格式如下:
N e[1] c[1] ... e[N] c[N]
其中N是该多项式非零项的个数,e[i]是第i个非零项的指数,c[i]是第i个非零项的系数。各项按照指数递减的顺序给出,保证所有指数是各不相同的非负整数,所有系数是非零整数,所有整数在整型范围内。
输出格式:
分两行先后输出商和余,输出格式与输入格式相同,输出的系数保留小数点后1位。同行数字间以1个空格分隔,行首尾不得有多余空格。注意:零多项式是一个特殊多项式,对应输出为0 0 0.0。但非零多项式不能输出零系数(包括舍入后为0.0)的项。在样例中,余多项式其实有常数项-1/27,但因其舍入后为0.0,故不输出。
输入样例:
4 4 1 2 -3 1 -1 0 -1
3 2 3 1 -2 0 1
输出样例:
3 2 0.3 1 0.2 0 -1.0
1 1 -3.1
Solution
參考柳神
分析:对于两个多项式A和B,题目给出的必定不会是连续降幂的,根据多项式的除法原理,我们需要缺幂项补零。例如,题中给出的x4-3x2-x-1是缺3次幂的,将缺幂项补上之后,就变成了x4+0x3-3x^2-x-1。由此,我们可以用一个数组来保存一个多项式,即数组的下标对应多项式的指数,下标对应的单元表示多项式的系数,如数组[-1, -1, -3, 0, 1]。
若已知A多项式的最高次幂为t1, B多项式的最高次幂为t2, 则第一次除法商的最高次幂为t1 – t2, 最高次幂的系数为A[t1] / B[t2], 然后用A[i] -= B[i – (t1 – t2)] * A[t1] / B[t2], 其中i从A的最高次幂t1到大于等于t1 – t2, 这样就算完成了一个除法了。例如A = [-1, -1, -3, 0, 1], B = [1, -2, 3], 则t1 = 4, t2= 2, 所以第一次除法商的最高次幂为2, 系数为A[4] / A[2] = 0.3, 循环A[i] -= B[i – (t1 – t2)] * A[t1] / B[t2], i从4到2, 得到新的A=[-1, -1, -10/3, 2/3, 0], 然后重复上面的步骤, 直到A的最高项幂次小于B的最高项幂次, 此时的A就是余项。
[两个可能会让结果出现非零项多项式的测试用例]
1 2 1
1 3 1
1 2 1
1 2 1
[一个比较好算一点的一般测试用例]
3 3 1 2 -12 0 -42
2 1 1 0 -3
// ouput
3 2 1.0 1 -9.0 0 -27.0
1 0 -123.0
具体代码如下:
#include <cmath>
#include <cstdio>
using namespace std;
int nonNegativeNum(double c[], int start) {
int cnt = 0;
for (int i = start; i >= 0; i--)
if (abs(c[i]) + 0.05 >= 0.1) cnt++;
return cnt;
}
void printPoly(double c[], int start) {
printf("%d", nonNegativeNum(c, start));
if (nonNegativeNum(c, start) == 0) printf(" 0 0.0");
for (int i = start; i >= 0; i--)
if (abs(c[i]) + 0.05 >= 0.1)
printf(" %d %.1f", i, c[i]);
}
double c1[3000], c2[3000], c3[3000];
int main() {
int m = 0, n = 0, t = 0, max1 = -1, max2 = -1;
scanf("%d", &m);
for (int i = 0; i < m; i++) {
scanf("%d", &t);
max1 = max1 > t ? max1 : t;
scanf("%lf", &c1[t]);
}
scanf("%d", &n);
for (int i = 0; i < n; i++) {
scanf("%d", &t);
max2 = max2 > t ? max2 : t;
scanf("%lf", &c2[t]);
}
int t1 = max1, t2 = max2;
while (t1 >= t2) {
double c = c1[t1] / c2[t2];
c3[t1 - t2] = c;
for (int i = t1, j = t2; j >= 0; j--, i--) c1[i] -= c2[j] * c;
while (abs(c1[t1]) < 0.000001) t1--;
}
printPoly(c3, max1 - max2);
printf("\n");
printPoly(c1, t1);
return 0;
}
L2-018 多项式A除以B (25 分) (math)的更多相关文章
- 7-10 多项式A除以B (25分)(多项式除法)
7-10 多项式A除以B (25分) 这仍然是一道关于A/B的题,只不过A和B都换成了多项式.你需要计算两个多项式相除的商Q和余R,其中R的阶数必须小于B的阶数. 输入格式: 输入分两行,每行给出 ...
- 1009 Product of Polynomials (25分) 多项式乘法
1009 Product of Polynomials (25分) This time, you are supposed to find A×B where A and B are two po ...
- 多项式A除以B
这个问题我是在PAT大区赛题里遇见的.题目如下: 多项式A除以B(25 分) 这仍然是一道关于A/B的题,只不过A和B都换成了多项式.你需要计算两个多项式相除的商Q和余R,其中R的阶数必须小于B的阶数 ...
- L2-006 树的遍历 (25 分) (根据后序遍历与中序遍历建二叉树)
题目链接:https://pintia.cn/problem-sets/994805046380707840/problems/994805069361299456 L2-006 树的遍历 (25 分 ...
- 1009 Product of Polynomials (25 分)
1009 Product of Polynomials (25 分) This time, you are supposed to find A×B where A and B are two pol ...
- PAT 甲级 1009 Product of Polynomials (25)(25 分)(坑比较多,a可能很大,a也有可能是负数,回头再看看)
1009 Product of Polynomials (25)(25 分) This time, you are supposed to find A*B where A and B are two ...
- PAT甲级 1002 A+B for Polynomials (25)(25 分)
1002 A+B for Polynomials (25)(25 分) This time, you are supposed to find A+B where A and B are two po ...
- A1082 Read Number in Chinese (25)(25 分)
A1082 Read Number in Chinese (25)(25 分) Given an integer with no more than 9 digits, you are suppose ...
- A1009 Product of Polynomials (25)(25 分)
A1009 Product of Polynomials (25)(25 分) This time, you are supposed to find A*B where A and B are tw ...
- PAT 甲级 1145 Hashing - Average Search Time (25 分)(读不懂题,也没听说过平方探测法解决哈希冲突。。。感觉题目也有点问题)
1145 Hashing - Average Search Time (25 分) The task of this problem is simple: insert a sequence of ...
随机推荐
- Object.assign () 和深拷贝
先看看啥叫深拷贝?啥叫浅拷贝? 假设B复制了A,修改A的时候,看B是否发生变化: 如果B跟着也变了,说明是浅拷贝,拿人手短!(修改堆内存中的同一个值) 如果B没有改变,说明是深拷贝,自食其力!(修改堆 ...
- 海量电商数据与用友YS系统数据对接案例
案例背景 客户是历史比较悠久的企业.企业内部用的系统多达十几套,专门成立信息化公司进行数字化转型,第一期需求系统旺店通的ERP以及旺店通的WMS并且启用京东的沧海外仓. 在选型ERP用友ERP和金蝶E ...
- 学会XPath,轻松抓取网页数据
一.定义 XPath(XML Path Language)是一种用于在 XML 文档中定位和选择节点的语言.XPath的选择功能非常强大,可以通过简单的路径选择语法,选取文档中的任意节点或节点集.学会 ...
- com.alibaba.nacos.api.exception.NacosException
具体异常如下: com.alibaba.nacos.api.exception.NacosException: <html><body><h1>Whitelabel ...
- MySQL 事务的基础知识
事务的基础知识 1. 数据库事务概述 事务是数据库区别于文件系统的重要特性之一,当我们有了事务就会让数据库中的数据始终保持 一致性,同时我们还能通过事务的机制 恢复到某个时间地点的数据,这样可以保证已 ...
- Vue学习笔记-指令
- Linux应急响应总结——更新中
Linux应急响应 用户信息 方向 查看可登录的用户: cat /etc/passwd | grep /bin/bash awk -F: '{if($7!="/usr/sbin/nologi ...
- java.time包中的类如何使用
java.time包是在java8中引入的日期和时间处理API,提供了一组全新的类,用于更灵活.更强大的处理日期和时间. 常用用法 1.localDate 表示日期,不包含时间和时区信息 import ...
- Python——第五章:os模块、sys模块
os 模块 os 模块提供了很多允许你的程序与操作系统直接交互的功能 import os 得到当前工作目录,即当前Python脚本工作的目录路径: os.getcwd() 返回指定目录下的所有文件和目 ...
- CF1340F Nastya and CBS 题解
题目大意 给定一个长度为 \(n(n \le 10 ^ 5)\) 的括号序列.要求支持两个操作: 修改某个位置的括号. 询问 \([l, r]\) 区间内的括号序列是否合法. 题目分析 显然,这道题是 ...