#直径,线段树#51nod 1766 树上的最远点对
题目
多组询问,在 \([a,b]\) 和 \([c,d]\) 中分别选一个点 \(x,y\) ,使得 \(dis(x,y)\) 最大
分析
考虑直径的一个性质,两个点集两条直径的四个端点可能成为合并后点集的直径,
用线段树维护区间直径询问时合并即可,LCA可以用dfs序 \(O(1)\) 询问
代码
#include <cstdio>
#include <cctype>
using namespace std;
const int N=100011; struct node{int y,w,next;}e[N<<1];
struct rec{int x,y;}w[N<<2];
int dep[N],dis[N],f[N<<1][18],two[18],lg[N<<1],dfn[N],as[N],n,tot,et=1;
int iut(){
int ans=0; char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=ans*10+c-48,c=getchar();
return ans;
}
void print(int ans){
if (ans>9) print(ans/10);
putchar(ans%10+48);
}
int max(int a,int b){return a>b?a:b;}
void dfs(int x,int fa){
dep[x]=dep[fa]+1,f[dfn[x]=++tot][0]=x;
for (int i=as[x];i;i=e[i].next)
if (e[i].y!=fa){
dis[e[i].y]=dis[x]+e[i].w;
dfs(e[i].y,x),f[++tot][0]=x;
}
}
int Get_Min(int x,int y){return dep[x]<dep[y]?x:y;}
int lca(int x,int y){
int l=dfn[x],r=dfn[y];
if (l>r) l^=r,r^=l,l^=r;
int z=lg[r-l+1];
return Get_Min(f[l][z],f[r-two[z]+1][z]);
}
int Dis(int x,int y){return dis[x]+dis[y]-2*dis[lca(x,y)];}
rec pup(rec A,rec B){
rec t=A; int d=Dis(A.x,A.y),now;
now=Dis(B.x,B.y); if (now>d) d=now,t=B;
now=Dis(A.x,B.x); if (now>d) d=now,t=(rec){A.x,B.x};
now=Dis(A.x,B.y); if (now>d) d=now,t=(rec){A.x,B.y};
now=Dis(A.y,B.x); if (now>d) d=now,t=(rec){A.y,B.x};
now=Dis(A.y,B.y); if (now>d) d=now,t=(rec){A.y,B.y};
return t;
}
void build(int k,int l,int r){
if (l==r){
w[k]=(rec){l,l};
return;
}
int mid=(l+r)>>1;
build(k<<1,l,mid);
build(k<<1|1,mid+1,r);
w[k]=pup(w[k<<1],w[k<<1|1]);
}
rec query(int k,int l,int r,int x,int y){
if (l==x&&r==y) return w[k];
int mid=(l+r)>>1;
if (y<=mid) return query(k<<1,l,mid,x,y);
else if (x>mid) return query(k<<1|1,mid+1,r,x,y);
else return pup(query(k<<1,l,mid,x,mid),query(k<<1|1,mid+1,r,mid+1,y));
}
int main(){
n=iut(),lg[0]=-1,two[0]=1;
for (int i=1;i<18;++i) two[i]=two[i-1]<<1;
for (int i=1;i<n;++i){
int x=iut(),y=iut(),w=iut();
e[++et]=(node){y,w,as[x]},as[x]=et;
e[++et]=(node){x,w,as[y]},as[y]=et;
}
dfs(1,0);
for (int i=1;i<=tot;++i) lg[i]=lg[i>>1]+1;
for (int j=1;j<=lg[tot];++j)
for (int i=1;i+two[j]-1<=tot;++i)
f[i][j]=Get_Min(f[i][j-1],f[i+two[j-1]][j-1]);
build(1,1,n);
for (int Q=iut();Q;--Q,putchar(10)){
int lx=iut(),ly=iut(),rx=iut(),ry=iut(); rec tl=query(1,1,n,lx,ly),tr=query(1,1,n,rx,ry);
print(max(max(Dis(tl.x,tr.x),Dis(tl.x,tr.y)),max(Dis(tl.y,tr.x),Dis(tl.y,tr.y))));
}
return 0;
}
#直径,线段树#51nod 1766 树上的最远点对的更多相关文章
- 51nod 1766 树上的最远点对 | LCA ST表 线段树 树的直径
51nod 1766 树上的最远点对 | LCA ST表 线段树 树的直径 题面 n个点被n-1条边连接成了一颗树,给出a~b和c~d两个区间,表示点的标号请你求出两个区间内各选一点之间的最大距离,即 ...
- [51nod 1766]树上的最远点对 (树的直径+ST表求lca+线段树)
[51nod 1766]树上的最远点对 (树的直径+ST表求lca+线段树) 题面 给出一棵N个点的树,Q次询问一点编号在区间[l1,r1]内,另一点编号在区间[l2,r2]内的所有点对距离最大值.\ ...
- 51Nod 1766 树上的最远点对
Description 一棵树,询问两个端点编号分别在在 \([a,b]\) 和 \([c,d]\) 两个区间中的最长链. Sol 线段树+ST表. 树上最长链可以合并,只需要合并两个区间最长链的两个 ...
- 51nod 1766 树上的最远点对(线段树)
像树的直径一样,两个集合的最长路也是由两个集合内部的最长路的两个端点组成的,于是我们知道了两个集合的最长路,枚举一下两两端点算出答案就可以合并了,所以就可以用线段树维护一个区间里的最长路了. #inc ...
- 51nod 1766 树上的最远点对——线段树
n个点被n-1条边连接成了一颗树,给出a~b和c~d两个区间,表示点的标号请你求出两个区间内各选一点之间的最大距离,即你需要求出max{dis(i,j) |a<=i<=b,c<=j& ...
- 【树形结构】51nod 1766 树上的最远点对
题目内容 \(n\)个点被\(n−1\)条边连接成了一颗树,边有权值\(w_i\).有\(q\)个询问,给出\([a,b]\)和\([c,d]\)两个区间,表示点的标号请你求出两个区间内各选一点之间的 ...
- 51 nod 1766 树上的最远点对(线段树+lca)
1766 树上的最远点对 基准时间限制:3 秒 空间限制:524288 KB 分值: 80 难度:5级算法题 n个点被n-1条边连接成了一颗树,给出a~b和c~d两个区间,表示点的标号请你求出两个 ...
- 51Nod.1766.树上最远点对(树的直径 RMQ 线段树/ST表)
题目链接 \(Description\) 给定一棵树.每次询问给定\(a\sim b,c\sim d\)两个下标区间,从这两个区间中各取一个点,使得这两个点距离最远.输出最远距离. \(n,q\leq ...
- 【做题】51Nod1766树上的最远点对——直径&线段树
原文链接 https://www.cnblogs.com/cly-none/p/9890837.html 题意:给出一棵大小为\(n\)的树,边有边权.\(m\)次询问,每次给出两个标号区间\([a, ...
- 【51nod】1766 树上的最远点对
[题意]给定n个点的树,m次求[a,b]和[c,d]中各选出一个点的最大距离.abcd是标号区间,n,m<=10^5 [算法]LCA+树的直径理论+线段树 [题解] 树的直径性质:距离树上任意点 ...
随机推荐
- centos docker服务问题
概述 docker的应用版本正式上线,结果一上线就出各种幺蛾子. 本文档主要介绍centos系统安装docker和启动的问题解决方法. 环境 docker registry:2 centos 6 &a ...
- Nebula Operator 云上实践
本文首发于 Nebula Graph Community 公众号 嗨,大家好!Nebula Operator 开源也有一段时间了,之前也有一篇相关的博客介绍,但是实践相关的博客却还没有,现在: 它来了 ...
- ArrayList学习总结
1.ArrayList简介[1] ArrayList实现了List接口.ArrayList的方法实现和vector相似,只是线程不安全的. ArrayList的 size.isEmpty.get.se ...
- Codeforces Round 799 (Div. 4)G. 2^Sort
暴力枚举每一个端点然后去check 显然是复杂度为\(O(n^2)\)是来不及的. 我们考虑大区间满足小区间一定满足,用两个指针维护一下当前满足不等式的区间,然后长度达到就计算答案. 思路很简单,主要 ...
- uni-app实现公众号登陆实现
公众号实现登陆流程思路: 1. 创建一个页面用于登陆,页面上需要有输入账号和密码的表单,以及登陆按钮.2. 在登陆按钮的点击事件中,调用后端接口进行账号密码校验.如果校验通过,则将后端返回的用户信息保 ...
- springboot中使用restTemplate发送带参数和请求头的post,get请求
最近在工作中使用到了用restTemplate去获取网站数据填入到数据库中,在这里记录下来以便以后使用: 添加相关依赖:版本使用springboot中的 <dependency> < ...
- Nginx安装nginx-rtmp-module模块
简介 nginx中的模块虽然就是类似插件的概念,但是它无法像VsCode那样轻松的安装扩展. nginx要安装其它模块必须同时拿到nginx源代码和模块源代码,然后手动编译,将模块打到nginx中,最 ...
- vscode 格式化 vue 和 js代码 vetur prettier beautify
这个文档 不涉及eslint 只专注自动格式化 格式化个性化需求: js中 自动去分号 js中 双引号变单引号 最大空换行数 是2 vue template中 属性自动折行 vue 的自动格式化 需要 ...
- vue初学者入门教程
vue初学者入门教程 欢迎关注博主公众号「java大师」, 专注于分享Java领域干货文章, 关注回复「资源」, 免费领取全网最热的Java架构师学习PDF, 转载请注明出处 https://www. ...
- Nodejs 命令行调用 exec 与 spawn 差异--- 解决 spawn yarn ENOENT error
Nodejs 命令行调用 exec 与 spawn 差异 比如在前端工程项目中 Nodejs 要调用命令行命令如: yarn electron:build exec 调用 yarn 命令,为了能使命令 ...