#容斥,搜索,线性筛#CF83D Numbers
分析
题意就是\(\sum_{i=l}^r[k|i]*[mn[\frac{i}{k}]\geq k]\)
首先线性筛每个数的最小质因数,如果\(\frac{r}{k}\)较小直接暴力
否则\(k\)一定比较小,那么直接容斥解决即可
代码
#include <cstdio>
#include <cctype>
#include <algorithm>
#define rr register
using namespace std;
const int N=5000000;
int prime[N+101],v[N+101],cnt,Tot,ans,nn;
inline signed iut(){
rr int ans=0; rr char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans;
}
inline void pro(){
for (rr int i=2;i<=N;++i){
if (!v[i]) v[i]=prime[++cnt]=i;
for (rr int j=1;j<=cnt&&prime[j]<=N/i;++j){
v[i*prime[j]]=prime[j];
if (i%prime[j]==0) break;
}
}
}
inline bool Is_Prime(int k){
if (k<=N) return v[k]==k;
for (rr int i=1;i<=cnt;++i){
if (prime[i]>k/prime[i]) break;
if (k%prime[i]==0) return 0;
}
return 1;
}
inline signed brute(int n,int k){
ans=1;
for (rr int i=2;i<=n;++i) ans+=v[i]>=k;
return ans;
}
inline void dfs(int dep,int now,int op){
if (dep>Tot){
ans+=op*(nn/now);
return;
}
dfs(dep+1,now,op);
if (now<=nn/prime[dep])
dfs(dep+1,now*prime[dep],-op);
}
inline signed Pro_DFS(int n,int k){
Tot=lower_bound(prime+1,prime+1+cnt,k)-prime-1,
ans=0,nn=n,dfs(1,1,1); return ans;
}
inline signed answ(int n,int k){
if (n<k||!Is_Prime(k)) return 0;
if (n/k<=N) return brute(n/k,k);
else return Pro_DFS(n/k,k);
}
signed main(){
rr int l=iut(),r=iut(),k=iut(); pro();
return !printf("%d",answ(r,k)-answ(l-1,k));
}
#容斥,搜索,线性筛#CF83D Numbers的更多相关文章
- [BZOJ1853][Scoi2010]幸运数字 容斥+搜索剪枝
1853: [Scoi2010]幸运数字 Time Limit: 2 Sec Memory Limit: 64 MBSubmit: 3202 Solved: 1198[Submit][Status ...
- bzoj 1853 容斥 + 搜索
思路:先把所有幸运数字找出来, 把没有用的去掉,然后爆搜容斥,因为最多只会搜十几个就超过限制了, 所以是可行的. #include<bits/stdc++.h> #define LL lo ...
- 2019.01.17 bzoj1853: [Scoi2010]幸运数字(容斥+dfs)
传送门 搜索菜题,然而第一次没有注意然后爆longlonglong longlonglong了. 题意:称所有数位由6,86,86,8组成的数为幸运数字,问一个一个区间[l,r][l,r][l,r]中 ...
- 洛谷$P4318$ 完全平方数 容斥+二分
正解:容斥/杜教筛+二分 解题报告: 传送门$QwQ$ 首先一看这数据范围显然是考虑二分这个数然后$check$就计算小于等于它的不是讨厌数的个数嘛. 于是考虑怎么算讨厌数的个数? 看到这个讨厌数说, ...
- BZOJ4671 异或图(容斥+线性基)
题意 定义两个结点数相同的图 \(G_1\) 与图 \(G_2\) 的异或为一个新的图 \(G\) ,其中如果 \((u, v)\) 在 \(G_1\) 与 \(G_2\) 中的出现次数之和为 \(1 ...
- 【LOJ#6072】苹果树(矩阵树定理,折半搜索,容斥)
[LOJ#6072]苹果树(矩阵树定理,折半搜索,容斥) 题面 LOJ 题解 emmmm,这题似乎猫讲过一次... 显然先\(meet-in-the-middle\)搜索一下对于每个有用的苹果数量,满 ...
- BZOJ 4671 异或图 | 线性基 容斥 DFS
题面 Description 定义两个结点数相同的图 G1 与图 G2 的异或为一个新的图 G, 其中如果 (u, v) 在 G1 与 G2 中的出现次数之和为 1, 那么边 (u, v) 在 G 中 ...
- 【BZOJ1853】幸运数字(搜索,容斥)
[BZOJ1853]幸运数字(搜索,容斥) 题面 BZOJ 洛谷 题解 成功轰下洛谷rk1,甚至超越了一个打表选手 这题思路很明显吧,先搞出来所有范围内的合法数字,然后直接容斥, 容斥的话显然没有别的 ...
- bzoj 4671 异或图——容斥+斯特林反演+线性基
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4671 考虑计算不是连通图的方案,乘上容斥系数来进行容斥. 可以枚举子集划分(复杂度是O(Be ...
- bzoj 4671 异或图 —— 容斥+斯特林反演+线性基
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4671 首先,考虑容斥,就是设 \( t[i] \) 表示至少有 \( i \) 个连通块的方 ...
随机推荐
- 用Spring Security + JWT 来实现身份认证和用户授权
https://mp.weixin.qq.com/s/FUYXAGlmt3HbwMoTygI4uQ
- 项目实战:Qt+iMax6生命探测仪(探测障碍物、静止目标、动态目标、生命目标、探测半径、探测前方雷达显示、动态目标轨迹显示、探测热力图、探测过程存储与回放)
若该文为原创文章,转载请注明原文出处本文章博客地址:https://blog.csdn.net/qq21497936/article/details/110994486长期持续带来更多项目与技术分享, ...
- 【Azure 环境】标准版 Logic App 如何查看 Workflow的执行成功数和失败数的指标呢?
问题描述 在Azure中创建逻辑应用(Logic App),有两种计划类型.一是消费型,另一种是标准型. 在消费型的Logic App Metrics页面中,我们可以看见Workflow的执行成功数指 ...
- expect tcl 摘录
目录 部分参考来源说明 例子 expect命令 核心命令有三个 spawn.expect.send 其他expect命令 expect命令的选项 变量 tcl摘录 数据类型 符号 命令 其他说明 部分 ...
- 基于Ant Design设计语言的WinForm UI界面库
前言 经常在技术群里看到有小伙伴提问:WinForm有什么好看.开源的UI库推荐的吗?,今天大姚给大家分享一款基于Ant Design(使用Ant Design 5.0)设计语言.开源(Apache ...
- C++ map //map/multimap容器 //map容器 构造和赋值 //map大小 和 交换 //map插入和删除 //map查找和统计 //map容器排序
1 //map/multimap容器 //map容器 构造和赋值 //map大小 和 交换 2 //map插入和删除 //map查找和统计 //map容器排序 3 4 #include<iost ...
- SQL之 数据库表字段约束与索引
第三范式 MySQL四种字段约束 主键约束 非空约束 唯一约束 创建索引 添加和删除索引
- netcat 命令介绍及使用示例
netcat 命令介绍及使用示例 nc(netcat)是一个强大的网络工具,它可以用于读取和写入数据流,支持 TCP 和 UDP 协议.它常被用于网络调试和网络服务的创建. 一.安装方法 centos ...
- verilog勘误系列之-->设计行为仿真和时序仿真不一致分析
描述 最近在vivado中设计一个计算器: 28bit有符号加减法,结果出现行为仿真和时序仿真不一致情况 原因 本篇是由于组合逻辑部分敏感信号使用错误导致 代码 r_a, r_b : 对计算数据a, ...
- NJUPT自控第一次积分赛的小总结(二)基于simpleFOC的无刷电机控制
新人一枚,写的比较水,欢迎大佬指正! 先说一下我用的物料与开发环境吧: 无刷电机:makerbase的2804电机(带AS5600磁编码器) 电机驱动板:simpleFOCmini(学校推荐的) 电池 ...