5.1 The Properties of Determinants

  1. The determinant of the n by n identity matrix is 1 : \(det I = 1\).

  2. The determinant changes sign when two rows are exchanged(sign reversal) : \(det P = \pm 1\) (det P = +1 for an even number of row exchange and det P = -1 for an odd number.)

  3. The determinant is linear function of each row separately :

    • 3a : multiply row i for any number t det is multiplied by t : \(\left[ \begin{matrix} ta&tb \\ c&d \end{matrix} \right] = t\left| \begin{matrix} a&b \\ c&d \end{matrix} \right|\)
    • 3b: add row i of A to row i of A' then determinants add : \(\left[ \begin{matrix} a+a'&b+b' \\ c&d \end{matrix} \right] = \left| \begin{matrix} a&b \\ c&d \end{matrix} \right| + \left| \begin{matrix} a'&b' \\ c&d \end{matrix} \right|\)

    From rules 1-3 we will reach rules 4-10.

  4. If two rows of A are equal, the det A = 0.

  5. Subtracting a multiple of one row from another row leaves det A unchanged. ( eliminaton steps doesn't change determinant : det A = det D, without row exchanges.)

  6. A matrix with a row of zeros has det A = 0.

  7. If A is triangular then \(det A = a_{11}a_{22}...a_{nn}\)=product of diagnonal entries.

  8. If A is singular then det A = 0. If A is invertible then \(det A \neq 0\).

  9. The determinant of AB is det A times det B : \(|AB| = |A||B|\) .

  10. The transpose \(A^T\) has the same determinant as A: \(det A^T = det A\).

    • A zero column will make the det A = 0.
    • Two equal columns will make the det A = 0.
    • If a column is multiplied by t, so is the determinant.

5.2 Three Formula for Determinant

The Pivot Formula

When elimination leads to \(A=LU\), the pivots \(d_1,d_2,...,d_n\) are on the diagonal of the upper triangular U.

No row exchanges: \(det A = (det L)(det U)=(1)(d_1d_2...d_n)\)

Row exchanges: \((detP)(detA)= (detL)(detU)\) gives \(detA = \pm(d_1d_2...d_n)\) , odd leads to minus(-), even leads to plus(+)

The Big Formula

The big formula has n! terms.

\[det A = \sum(detP)a_{1\alpha}a_{1\beta}...a_{n\omega}
\]

example:

\[\left| \begin{matrix} a_{11}&a_{12}&a_{13}\\ a_{21}&a_{22}&a_{23} \\ a_{31}&a_{32}&a_{33} \\\end{matrix} \right| =
\left| \begin{matrix} a_{11}&&\\ &a_{22}& \\ &&a_{33} \\\end{matrix} \right| +
\left| \begin{matrix} &a_{12}&\\ &&a_{23} \\ a_{31}&& \\\end{matrix} \right| +
\left| \begin{matrix} &&a_{13}\\ a_{21}&& \\ &a_{32}& \\\end{matrix} \right| +\\
\quad \quad \quad \quad \quad \quad \quad \quad
\left| \begin{matrix} a_{11}&&\\ &&a_{23} \\ &a_{32}& \\\end{matrix} \right| +
\left| \begin{matrix} &a_{12}&\\ a_{21}&& \\ &&a_{33} \\\end{matrix} \right| +
\left| \begin{matrix} &&a_{13}\\ &a_{22}& \\ a_{31}&& \\\end{matrix} \right| + \\
\Downarrow \\
det A = a_{11}a_{22}a_{33}\left| \begin{matrix} 1&&\\ &1& \\ &&1\\\end{matrix} \right| + a_{12}a_{23}a_{31}\left| \begin{matrix} &1&\\ &&1 \\ 1&&\\\end{matrix} \right| +
a_{13}a_{21}a_{32}\left| \begin{matrix} &&1\\ 1&& \\ &1&\\\end{matrix} \right| + \\
\quad \quad \quad
a_{11}a_{23}a_{32}\left| \begin{matrix} 1&&\\ &&1 \\ &1&\\\end{matrix} \right| +
a_{12}a_{21}a_{33}\left| \begin{matrix} &1&\\ 1&& \\ &&1\\\end{matrix} \right| +
a_{13}a_{22}a_{31}\left| \begin{matrix} &&1\\ &1& \\ 1&&\\\end{matrix} \right| \\
\quad \quad \quad
=a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} +
a_{13}a_{21}a_{32}-a_{11}a_{23}a_{32} -
a_{12}a_{21}a_{33} -
a_{13}a_{22}a_{31}
\]

The Cofactors Formula

The determinant is the dot product of any row i of A with its cofactors using other rows:

\[det A = a_{i1}C_{i1} + a_{i2}C_{i2} + ... + a_{in}C_{in}
\]

Each cofactor \(C_{ij}\) (order n-1, without row i and column j) includes its correct sign:

\[C_{ij} = (-1)^{i + j} det M_{i+j}
\]

example:

\[\left| \begin{matrix} a_{11}&a_{12}&a_{13}\\ a_{21}&a_{22}&a_{23} \\ a_{31}&a_{32}&a_{33} \\\end{matrix} \right| =
\left| \begin{matrix} a_{11}&&\\ &a_{22}&a_{23} \\ &a_{32}&a_{33} \\\end{matrix} \right| +
\left| \begin{matrix} &a_{12}&\\ a_{21}&&a_{23} \\ a_{31}&&a_{33} \\\end{matrix} \right| +
\left| \begin{matrix} &&a_{13}\\ a_{21}&a_{22}& \\ a_{31}&a_{32}& \\\end{matrix} \right|
\]
\[C_{11} = a_{22}a_{33}-a_{23}a_{32} \\
C_{12} = -(a_{21}a_{33}-a_{23}a_{31}) \\
C_{13} = a_{21}a_{32}-a_{22}a_{31}
\]

5.3 Inverse\ Cramer's Rule\ Volumn of box

Formula for \(A^{-1}\)

The i, j entry of \(A^{-1}\) is the cofactor \(C_{ji}\) divided by det A:

\[(A_{ij}^{-1}) = \frac{C_{ji}}{det A} \\
A^{-1} = \frac {C^T}{detA}
\]

proof :

\[A^{-1} = \frac {C^T}{detA} \\
\Uparrow \\
AC^T = (detA)I \\
\Uparrow \\

\left[ \begin{matrix} a_{11}&a_{12}&a_{13}\\ a_{21}&a_{22}&a_{23} \\ a_{31}&a_{32}&a_{33} \\\end{matrix} \right]
\left[ \begin{matrix} C_{11}&C_{21}&C_{31}\\ C_{12}&C_{22}&C_{32} \\ C_{13}&C_{23}&C_{33} \\\end{matrix} \right] =
\left[ \begin{matrix} detA&0&0\\ 0&detA&0 \\ 0&0&detA \\\end{matrix} \right]
\]

Cramer's Rule

If det A is not zero, Ax=b is solved by determinants:

\[x_1 = \frac{det B_1}{detA} , x_2 = \frac{det B_2}{detA}, \cdots, x_n = \frac{det B_n}{detA}
\]

The matrix \(B_j\) has the jth column of A replaced by the vector b.

example:

\[Solve \quad Ax = (1,0,0) \\
det B_1 = \left| \begin{matrix} 1&a_{12}&a_{13}\\ 0&a_{22}&a_{23} \\ 0&a_{32}&a_{33} \\\end{matrix} \right| \\
det B_2 =\left| \begin{matrix} a_{11}&1&a_{13}\\ a_{21}&0&a_{23} \\ a_{31}&0&a_{33} \\\end{matrix} \right| \\
det B_3 =\left| \begin{matrix} a_{11}&a_{12}&1\\ a_{21}&a_{22}&0\\ a_{31}&a_{32}&0 \\\end{matrix} \right|
\]

Volumn of box

The volume equals the absolute value of det A.

Area of Parallelogram and Triangle

Determinants are the best way to find area.

Area of Parallelogram : \(Area = Determinant\)

Area of Triangle: \(Area = Determinant / 2\)

When an edge is stretched by a factor t, the volume is multiplied by t. (Rule 3a)

When edge 1 is added to edge 1', the volume is the sum of the two original volumes.(Rule 3b)

5.4 Cross Product

The cross product of \(u=(u_1,u_2,u_3)\) and \(v=(v_1,v_2,v_3)\) is a vector.

\[u \times v = \left[ \begin{matrix} i&j&k \\ u_1&u_2&u_3 \\ v_1&v_2&v_3 \end{matrix} \right] = (u_2v_3-u_3v_2)i + (u_3v_1-u_1v_3)j +(u_1v_2-u_2v_1)k
\]

The cross product is a vector with length \(||u|| \ \ ||v|| \ \ |sin\theta|\). Its direction is perpendicular to u and v.It points "up" or "down" by the right hand rule.

\[||u \times v|| =||u|| \ \ ||v||\ \ |sin\theta| \\ ( ||u \cdot v|| =||u|| \ \ ||v||\ \ |cos\theta| )
\]

5. Determinant的更多相关文章

  1. bzoj 2107: Spoj2832 Find The Determinant III 辗转相除法

    2107: Spoj2832 Find The Determinant III Time Limit: 1 Sec  Memory Limit: 259 MBSubmit: 154  Solved: ...

  2. SPOJ - DETER3:Find The Determinant III (求解行列式)

    Find The Determinant III 题目链接:https://vjudge.net/problem/SPOJ-DETER3 Description: Given a NxN matrix ...

  3. SPOJ - Find The Determinant III 计算矩阵的行列式答案 + 辗转相除法思想

    SPOJ -Find The Determinant III 参考:https://blog.csdn.net/zhoufenqin/article/details/7779707 参考中还有几个关于 ...

  4. XTU 1260 - Determinant - [2017湘潭邀请赛A题(江苏省赛)][高斯消元法][快速幂和逆元]

    是2017江苏省赛的第一题,当时在场上没做出来(废话,那个时候又不懂高斯消元怎么写……而且数论也学得一塌糊涂,现在回来补了) 省赛结束之后,题解pdf就出来了,一看题解,嗯……加一行再求逆矩阵从而得到 ...

  5. 2017湘潭赛 A题 Determinant (高斯消元取模)

    链接 http://202.197.224.59/OnlineJudge2/index.php/Problem/read/id/1260 今年湘潭的A题 题意不难 大意是把n*(n+1)矩阵去掉某一列 ...

  6. Linear Algebra - Determinant(几何意义)

    二阶行列式的几何意义 二阶行列式 \(D = \begin{vmatrix}a_1&a_2\\b_1&b_2\end{vmatrix} = a_1b_2 - a_2b_1\) 的几何意 ...

  7. Linear Algebra - Determinant(基础)

    1. 行列式的定义 一阶行列式: \[ \begin{vmatrix} a_1 \end{vmatrix} = a_1 \] 二阶行列式: \[ \begin{vmatrix} a_{11} & ...

  8. The Evaluation of Determinant(求行列式mod一个数的值)

    #include<cstdio> #include<iostream> #include<algorithm> #include<cstring> #i ...

  9. 行列式(determinant)的物理意义及性质

    1. 物理(几何)意义 detA=output areainput area 首选,矩阵代表的是线性变换(linear transformation).上式说明一个矩阵的行列式(detA)几何意义上, ...

  10. SP1772 Find The Determinant II

    题意 \(T\) 组数据,每组给定两个整数 \(n,k\),求 \(\det A\),其中 \(A\) 为一个 \(n\times n\) 的矩阵且 \(A_{i,j}=\gcd(i,j)^k\),对 ...

随机推荐

  1. 【Azure 应用服务】App Service For Linux 环境中,如何从App Service中获取GitHub私有库(Private Repos)的Deploy Key(RSA key)呢?

    问题描述 为App Service For Linux配置CI/CD,源代码在GitHub私有库中,在发布时候报错 Cannot find SourceControlToken with name B ...

  2. Frechet Inception Distance

    (以下内容重新更新,主要讲解FID的意义,为何FID能够表示生成图像的多样性和质量,为什么FID越小,则图像多样性越好,质量也越好) 在计算FID中我们也同样使用inception network网络 ...

  3. 二: sql模式(sql_mode)

    # sql_mode 1 介绍 sql_mode 会影响 MySQL支持的SQL语法以及它执行的数据验证检查.通过设置sql_mode,可以完成不同严格程度 的数据校验,有效地保障数据准确性. MyS ...

  4. java中StringBuffer与 StringBuilder 类

    目录 创建 StringBuffer 类 追加字符串 替换字符 反转字符串 删除字符串 StringBuffer 方法 在 Java 中,除了通过 String 类创建和处理字符串之外,还可以使用 S ...

  5. 从零开始写 Docker(五)---基于 overlayfs 实现写操作隔离

    本文为从零开始写 Docker 系列第五篇,在 pivotRoot 基础上通过 overlayfs 实现写操作隔离,达到容器中写操作和宿主机互不影响. 完整代码见:https://github.com ...

  6. Java开发中String.format的妙用

    format方法是String类中的一个方法,主要作用是用来格式化字符串.当前做 的一个功能当中,刚好用到了这个方法,代码处理起来非常简便.因此就写篇博客 记录下来. 分析使用场景:前端App需要根据 ...

  7. 候捷-C++面向对象高级开发

    目录 笔记参考 学习目标 complex类 构造函数 常量成员函数 参数传递 函数返回值 临时对象 友元 string类 三大函数 堆.栈与内存管理 扩展补充:类模板.函数模板及其他 继承.复合.委托 ...

  8. C++容器、类型转换、异常与文件流操作

    C++容器.类型转换.异常与文件流操作 目录 C++容器.类型转换.异常与文件流操作 容器 序列式容器/顺序容器 向量(vector) 列表 (list) 双端队列(deque) 栈(stack) 队 ...

  9. .gvfs 文件夹 异常

    PS:要转载请注明出处,本人版权所有. PS: 这个只是基于<我自己>的理解, 如果和你的原则及想法相冲突,请谅解,勿喷. 前置说明   本文作为本人csdn blog的主站的备份.(Bl ...

  10. Android 开发Day9

    /** * Automatically generated file. DO NOT MODIFY */ package com.hui.tally; public final class Build ...