第三方测评:GaussDB(for Redis)稳定性与扩容表现
摘要:本文将通过采用Redis Labs推出的多线程压测工具memtier_benchmark对比测试下GaussDB(for Redis) 和原生Redis的特性差异
本文分享自华为云社区《墨天轮评测:GaussDB(for Redis)稳定性与扩容表现》,本文转载自墨天轮。
GaussDB(for Redis) 是华为云推出的企业级Redis,采用计算存储分离架构,兼容Redis生态的云原生NoSQL数据库,基于共享存储池的多副本强一致机制,支持持久化存储,保证数据的安全可靠。具有高兼容、高性价比、高可靠、弹性伸缩、高可用、无损扩容等特点。
GaussDB(for Redis)满足高读写性能场景及容量需弹性扩展的业务需求,广泛使用于电商、游戏以及视频直播等行业。即可作为前端缓存支撑大并发的访问,也可作为底层数据库负责核心数据可靠存储。
接下来我们使用采用Redis Labs推出的多线程压测工具memtier_benchmark对比测试下GaussDB(for Redis) 和原生Redis的特性差异。
1、创建GaussDB(for Redis)实例
在华为云通过控制台购买GaussDB(for Redis)实例,测试实例的配置为8G容量,如下所示。

如截图所示,GaussDB(for Redis)提供了统一的负载均衡地址和端口,方便应用程序访问高可用的Redis服务。持久化数据存储空间直观展示了数据量及容量上限。另外,依托于GaussDB(for Redis)存算分离的架构,实例的容量和性能可以按需分别扩展:
- 如需更多容量,只需点击“磁盘扩容”;
- 如需更高的吞吐性能,则通过“规格变更”或“添加节点”完成。
2、安装memtier_benchmark
使用与GaussDB(for Redis)测试实例相同子网的ECS云服务器,部署memtier_benchmark测试环境
# yum install autoconf automake make gcc-c++
# yum install pcre-devel zlib-devel libmemcached-devel openssl-devel
# git clone https://github.com/RedisLabs/memtier_benchmark.git
# cd memtier_benchmark
# autoreconf -ivf
# ./configure
# make && make install 如libevent版本较低,需要在安装memtier_benchmark前 按以下步骤安装libevent
# wget https://github.com/downloads/libevent/libevent/libevent-2.0.21-stable.tar.gz
# tar xfz libevent-2.0.21-stable.tar.gz
# pushd libevent-2.0.21-stable
# ./configure
# make
# sudo make install
# popd
# export PKG_CONFIG_PATH=/usr/local/lib/pkgconfig:${PKG_CONFIG_PATH} 确认安装成功
# memtier_benchmark --help
3、数据批量装载
向GaussDB(for Redis) 中装载数据
使用memtier_benchmark向GaussDB(for Redis) 中装载数据命令如下,单个value长度1000字节,12个线程,每个线程16个客户端,每个客户端发出请求数100000个,全部是写入操作。
memtier_benchmark -s 192.XXX.XXX.XXX -a XXXXXXX -p 8635 -c 16 -t 12 -n 100000 --random-data --randomize --distinct-client-seed -d 1000 --key-maximum=65000000 --key-minimum=1 --key-prefix= --ratio=1:0 --out-file=./result_small_6G_set.log
可以看到执行了1920万次操作,平均每秒4.4w的ops,总耗时438秒。

使用redis-cli登录实例,查看dbsize(注意:由于采用MVCC机制,查询结果为key数量的预估值,非实时的准确值。)

向原生Redis中装载数据
为了对比方便,我们在另一台4核8G的ECS上部署一个单节点的开源Redis,版本与GaussDB(for Redis)一致使用5.0

还是使用memtier_benchmark相同的配置向原始redis中插入数据
memtier_benchmark -s 192.XXX.XXX.XXX -a XXXXXXX -p 6379 -c 16 -t 12 -n 100000 --random-data --randomize --distinct-client-seed -d 1000 --key-maximum=65000000 --key-minimum=1 --key-prefix= --ratio=1:0 --out-file=./result_small_6G_set_2.log
执行一段时间后出现大量报错

从Redis日志中查看,是在做RDB快照的时候出现了问题。从系统日志中分析当时发生了OOM故障。


这其实和原生Redis的RDB快照处理方式有关,Redis是fork了一个进程使用copy-on-write的方式持久化内存数据,这必然会导致更多内存的申请和使用。并且除了RDB快照,原生redis在执行aof重写,新加从库的操作时也会申请使用更多的内存。为了避免OOM的情况出现,操作系统往往要预留出一倍的空闲内存,限制了内存资源的使用率造成极大的浪费。
反观GaussDB(for Redis) 由于摒弃了fork机制,使得架构更健壮。
从上面的测试也可以看到,导入同样数量的数据时,GaussDB(for Redis) 的可用性和响应的性能没有受到任何的影响。
4、实例紧急扩容
为了测试能进行下去,我们将GaussDB(for Redis) 和原生Redis分别扩容到16G。
GaussDB(for Redis)扩容到16G
对GaussDB(for Redis) 来说由于采用了存算分离的架构,分布式存储池海量在线,按额度分配给用户使用。扩容过程没有数据拷贝,也不会影响业务使用。接下来我们测试使用memtier_benchmark在持续的RW操作场景下GaussDB(for Redis)的扩容过程,看看是否会影响业务的读写;
memtier_benchmark -s 192.XXX.XXX.XXX -a XXXXXXXX -p 8635 -c 16 -t 12 -n 10000 --random-data --randomize --distinct-client-seed -d 1000 --key-maximum=65000000 --key-minimum=1 --key-prefix= --ratio=1:0 --out-file=./result_small_6G_set_get.log
在执行命令的同时进行扩容操作,查看测试结果和监控发现,扩容期间未见报错,GaussDB(for Redis) 响应时延没有明显变化。



原生Redis扩容到16G
原生Redis实例受服务器内存限制,要扩容到16G只能先升级ECS配置。需要重启服务器,存在短时间业务不可使用的问题。升级后再次使用memtier_benchmark插入数据依旧报错,检查发现还是出现了OOM



没办法,只能再次升级云服务器ECS配置到32G,升级期间Redis服务再次不可用。这次升级后终于使用memtier_benchmark成功的插入了数据。

5、数据淘汰问题
下面我们来看高压力下导致数据写满的场景,直观对比双方的表现。
插入数据到GaussDB(for Redis)
memtier_benchmark参数设置如下,全部为写入操作,set的单个value长度50k字节,12个线程,每个线程16个客户端,每个客户端发出请求数10000次请求。折算下来 总的插入的key约为192万,数据量约96G,远大于实例的规格了。
memtier_benchmark -s 192.XXX.XXX.XXX -a XXXXXXX -p 8635 -c 16 -t 12 -n 10000 --random-data --randomize --distinct-client-seed -d 50000 --key-maximum=65000000 --key-minimum=1 --key-prefix= --ratio=1:0 --out-file=./result_small_6G_set.log
运行了一段时间后,从监控上看到GaussDB(for Redis)磁盘空间100%,并且实例进入只读模式拒绝新数据的写入。检查发现共导入数据194954条。




对于GaussDB(for Redis)来说,当容量接近写满的时候,用户会收到告警通知,此时只需在控制台点击“磁盘扩容”,即可秒级完成扩容,对业务没有影响。



插入数据到原生Redis
原生Redis通过配置限制了内存大小为8G,同样执行以下命令导入数据
memtier_benchmark -s 192.XXX.XXX.XXX -a XXXXXXX -p 8635 -c 16 -t 12 -n 10000 --random-data --randomize --distinct-client-seed -d 50000 --key-maximum=65000000 --key-minimum=1 --key-prefix= --ratio=1:0 --out-file=./result_small_6G_set.log
运行一段时间后报错。

登录redis查看内存已写满

也可以通过配置maxmemory-policy设置数据淘汰策略保障数据写入,如图我们将淘汰策略设置成allkeys-lru,即淘汰最近最少使用的key 满足插入数据的内存需求;

修改配置后 插入正常

综上,GaussDB(for Redis)更加看重数据安全,将“保障用户数据不丢”作为最高优先级。当数据写满后自动进入只读模式,确保实例中数据的安全。通过控制台可以做到快速的扩容,最大可能降低对业务的影响。 原生Redis提供了数据淘汰参数,用户可自主选择策略当数据写满后淘汰符合条件的数据,设计思想更偏向于缓存的用途“数据可随意丢弃”。如使用在重要的业务场景,不希望数据丢失,建议选择GaussDB(for Redis)。
6、测试总结
本次我们使用memtier_benchmark分别对GaussDB(for Redis) 和原生Redis进行set操作的测试,8G规格的GaussDB(for Redis) 很顺利的完成了数据加载的操作,原生Redis出现OOM异常导致数据加载失败。原生Redis通过fork进程copy-on-write的方式拷贝数据,在RDB快照、aof重写以及新增从库等操作时容易出现OOM异常。反观GaussDB(for Redis) 由于摒弃了fork机制,使得架构更健壮,服务的可用性更强。
在后续的扩容操作中GaussDB(for Redis)能够快速完成且对业务RW操作无影响,而原生Redis扩容需停服,期间业务无法正常使用。GaussDB(for Redis)快速扩容的特性非常适合生产环境中需要紧急扩容的场景,如游戏开服、电商抢购的火爆程度远超预期时。从测试的情况看,扩容几乎达到了秒级完成,且扩容过程中对业务的读写完全没有影响。
另外更重要的原生Redis无论采用RDB还是aof方式进行数据持久化,都有数据丢失的风险,而GaussDB(for Redis)支持全量数据落盘,GaussDB基础组件服务提供底层数据三副本冗余保存,能够保证数据零丢失。
如果使用场景既要满足KV查询的高性能,又希望数据得到重视能够不丢,建议从原生Redis迁移到GaussDB(for Redis) 。
第三方测评:GaussDB(for Redis)稳定性与扩容表现的更多相关文章
- 华为云企业级Redis评测第一期:稳定性与扩容表现
摘要:采用Redis Labs推出的多线程压测工具memtier_benchmark对比测试下GaussDB(for Redis) 和原生Redis的特性差异. 本文分享自华为云社区<华为云企业 ...
- 深度评测丨 GaussDB(for Redis) 大 Key 操作的影响
本文分享自华为云社区<墨天轮评测:GaussDB(for Redis)大Key操作的影响>,作者: 高斯 Redis 官方博客. 在前一篇文章<墨天轮评测:GaussDB(for R ...
- 揭秘GaussDB(for Redis):全面对比Codis
摘要:Codis集群在国内Redis生态圈很流行,社区已停止维护.本文从架构和特性两方面对比,带你感受华为云GaussDB(for Redis)的全新价值. 本文分享自华为云社区<华为云Gaus ...
- 华为云PB级数据库GaussDB(for Redis)揭秘第八期:用高斯 Redis 进行计数
摘要:高斯Redis,计数的最佳选择! 一.背景 当我们打开手机刷微博时,就要开始和各种各样的计数器打交道了.我们注册一个帐号后,微博就会给我们记录一组数据:关注数.粉丝数.动态数-:我们刷帖时,关注 ...
- 即时通讯系统为什么选择GaussDB(for Redis)?
摘要:如果你需要一款稳定可靠的高性能企业级KV数据库,不妨试试GaussDB(for Redis). 每当网络上爆出热点新闻,混迹于各个社交媒体的小伙伴们全都开启了讨论模式.一条消息的产生是如何在群聊 ...
- 华为云PB级数据库GaussDB(for Redis)揭秘第七期:高斯Redis与强一致
摘要:在KV数据库领域,"强一致性"不仅是一个技术名词,它更是业务与运维的重要需求. 清明刚过,五一假期就要来了.大好春光,不如去婺源看油菜花吧!小云迅速打开APP刷出余票2张,赶 ...
- 【laravel5.* + 钉钉实现WEB第三方登录】 使用redis 作为持久化存储
1.去钉钉开发者平台>自助者工具,创建扫码登录授权应用,填写名称.描述.授权页面logo地址(这个图片最后会出现在用户扫码设备中,建议使用压缩图片减少用户加载时间).回调域名(一般都是写一个子域 ...
- Redis的字典扩容与ConcurrentHashMap的扩容策略比较
本文介绍Redis的字典(是种Map)扩容与ConcurrentHashMap的扩容策略,并比较它们的优缺点. (不讨论它们的实现细节) 首先Redis的字典采用的是一种‘’单线程渐进式rehash‘ ...
- Redis大集群扩容性能优化实践
一.背景 在现网环境,一些使用Redis集群的业务随着业务量的上涨,往往需要进行节点扩容操作. 之前有了解到运维同学对一些节点数比较大的Redis集群进行扩容操作后,业务侧反映集群性能下降,具体表现在 ...
- redis集群扩容(添加新节点)
一.创建节点(接上文) 1.在H1服务器/root/soft目录下创建7002目录 2.将7001目录的配置文件redis.conf拷贝到7002,并修改配置文件的端口 3.进入 redis-5.0. ...
随机推荐
- Windows虚拟机环境下Linux设置固定IP地址
Linux 设置固定IP地址 安装环境是VMware Workstation Pro 15 安装完linux之后需要做的第一件事就是配置网络,有了网络我们可以下载插件,使用xshell工具连接等等 i ...
- 洛谷1451(BFS)
#include"bits/stdc++.h" using namespace std; int mp[110][110]; bool vis[110][110]; int dx[ ...
- django 国际化
参考文档: https://docs.djangoproject.com/zh-hans/2.2/topics/i18n/translation/ https://blog.csdn.net/qq_3 ...
- 线程的查看方式&运行原理
观察多个线程同时运行 主要是理解 交替执行 谁先谁后,不由我们控制 查看进程线程的方法 windows 任务管理器可以查看进程和线程数,也可以用来杀死进程 tasklist 查看进程 taskkill ...
- vue3.0父级组件调用子组件方法
vue3.0父级组件调用子组件方法 场景:在页面开发过程中,我经常涉及到不同组件之间的元素和方法的调用.就此记录在vue3.0项目,也是我开发的开源项目中的实现方式. 父级组件调用子级 1.应用场景 ...
- 操作PDF的方法
PDF的内容提取.转换见上篇 PDF操作: 旋转 删除 合并 拆分 转成图片 导出内嵌资源图片 两页合并成一页 添加.去除密码 添加水印 PDF旋转某一页 var document = pdfView ...
- JUC并发编程(终章)各种锁的理解
各种锁的理解 公平锁.非公平锁 公平锁:先到先得(不可插队) 非公平锁:达者为先(可插队)---------->默认 public ReentrantLock() { //默认非公平锁 sync ...
- 【vue】【外包杯】jtl和html文件的区别
ftl(freemaker) jsp(jstl) 举例:html ftl
- timeSetEvent()函数定时器的使用
1.定时器函数的使用 微软公司在其多媒体Windows中提供了精确定时器的底层API支持,利用多媒体定时器可以很精确地读出系统的当前时间,并且能在非常精确的时间间隔内完成一个事件.函数或过程的调用. ...
- C#中的并行处理、并行查询的方法你用对了吗?
Parallel.ForEach Parallel.ForEach 是一个用于在集合上并行执行迭代操作的强大工具.它通过有效地利用多核处理器的能力来提高性能.Parallel.ForEach 不仅能够 ...