【Codeforces715C&716E】Digit Tree 数学 + 点分治
C. Digit Tree
ZS the Coder has a large tree. It can be represented as an undirected connected graph of n vertices numbered from 0 to n - 1 and n - 1edges between them. There is a single nonzero digit written on each edge.
One day, ZS the Coder was bored and decided to investigate some properties of the tree. He chose a positive integer M, which iscoprime to 10, i.e.
.
ZS consider an ordered pair of distinct vertices (u, v) interesting when if he would follow the shortest path from vertex u to vertex v and write down all the digits he encounters on his path in the same order, he will get a decimal representaion of an integer divisible by M.
Formally, ZS consider an ordered pair of distinct vertices (u, v) interesting if the following states true:
- Let a1 = u, a2, ..., ak = v be the sequence of vertices on the shortest path from u to v in the order of encountering them;
- Let di (1 ≤ i < k) be the digit written on the edge between vertices ai and ai + 1;
- The integer
is divisible by M.
Help ZS the Coder find the number of interesting pairs!
Input
The first line of the input contains two integers, n and M (2 ≤ n ≤ 100 000, 1 ≤ M ≤ 109,
) — the number of vertices and the number ZS has chosen respectively.
The next n - 1 lines contain three integers each. i-th of them contains ui, vi and wi, denoting an edge between vertices ui and vi with digit wi written on it (0 ≤ ui, vi < n, 1 ≤ wi ≤ 9).
Output
Print a single integer — the number of interesting (by ZS the Coder's consideration) pairs.
Examples
6 7
0 1 2
4 2 4
2 0 1
3 0 9
2 5 7
7
5 11
1 2 3
2 0 3
3 0 3
4 3 3
8
Note
In the first sample case, the interesting pairs are (0, 4), (1, 2), (1, 5), (3, 2), (2, 5), (5, 2), (3, 5). The numbers that are formed by these pairs are 14, 21, 217, 91, 7, 7, 917 respectively, which are all multiples of 7. Note that (2, 5) and (5, 2) are considered different.

In the second sample case, the interesting pairs are (4, 0), (0, 4), (3, 2), (2, 3), (0, 1), (1, 0), (4, 1), (1, 4), and 6 of these pairs give the number 33 while 2 of them give the number 3333, which are all multiples of 11.

Solution
一道比较好想好写的点分治
点分治显然,考虑如何计算复合的路径条数。
对于每个点我们维护两个值$Dig[x],Dig'[x]$,表示重心到这个点的路径组成的数,以及这个点到重心组成的数
这样对于一个点对$<u,v>$我们可以知道他们的$Dig[u],Dig[v],Dig'[u],Dig'[v]$,那么他们所组成的数就是$Dig'[u]*10^{k}+Dig[v]$
这个$k$我们发现,就相当于是$deep[u]$,知道这些就有思路搞了
题目的要求就是$Dig<u,v>mod M=0$也就可以转化成$Dig'[u]*10^{deep[u]}+Dig[v]\equiv 0(modM)$
然后整理一下就可以得到$Dig'[u]\equiv -Dig[v]*\frac{1}{10^{deep[u]}}$
然后用map存一下式子右边,对于一个点,它对答案的贡献就是hash表里的$Dig'[u]$的数量
Code
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<map>
using namespace std;
#define LL long long
inline int read()
{
int x=,f=; char ch=getchar();
while (ch<'' || ch>'') {if (ch=='-') f=-; ch=getchar();}
while (ch>='' && ch<='') {x=x*+ch-''; ch=getchar();}
return x*f;
}
#define MAXN 100010
int N,M;
map<LL,LL>hash;
LL ans;
namespace Math
{
LL power[MAXN],Inv[MAXN];
inline LL Gcd(LL a,LL b) {if (!b) return a; else return Gcd(b,a%b);}
inline void ExGcd(LL a,LL b,LL &x,LL &y) {if (!b) {x=,y=; return;} ExGcd(b,a%b,y,x); y-=(a/b)*x;}
inline LL inv(LL X) {LL x,y; ExGcd(X,M,x,y); return (x%M+M)%M;}
inline LL Pow(LL x,LL y) {LL re=; for (LL i=y; i; i>>=,x=x*x%M) if (i&) re=re*x%M; return re;}
}
using namespace Math;
namespace TreeDivide
{
struct EdgeNode{int next,to,val;}edge[MAXN<<];
int head[MAXN],cnt=;
inline void AddEdge(int u,int v,int w) {cnt++; edge[cnt].to=v; edge[cnt].next=head[u]; head[u]=cnt; edge[cnt].val=w;}
inline void InsertEdge(int u,int v,int w) {AddEdge(u,v,w); AddEdge(v,u,w);}
int size[MAXN],f[MAXN],visit[MAXN],root,deep[MAXN],Sz;
LL Dig[MAXN];
inline void Getroot(int x,int last)
{
size[x]=,f[x]=;
for (int i=head[x]; i; i=edge[i].next)
if (!visit[edge[i].to] && edge[i].to!=last)
{
Getroot(edge[i].to,x);
size[x]+=size[edge[i].to];
f[x]=max(f[x],size[edge[i].to]);
}
f[x]=max(f[x],Sz-f[x]);
if (f[x]<f[root]) root=x;
}
inline void DFS(int now,int last)
{
LL D=(((M-Dig[now])+M)%M*Inv[deep[now]])%M; hash[D]++;
for (int i=head[now]; i; i=edge[i].next)
if (edge[i].to!=last && !visit[edge[i].to])
deep[edge[i].to]=deep[now]+,
Dig[edge[i].to]=(Dig[now]*%M+edge[i].val)%M,
DFS(edge[i].to,now);
}
inline LL Get(int now,int last)
{
LL re=hash[Dig[now]];
for (int i=head[now]; i; i=edge[i].next)
if (edge[i].to!=last && !visit[edge[i].to])
Dig[edge[i].to]=(edge[i].val*power[deep[now]]%M+Dig[now])%M,
deep[edge[i].to]=deep[now]+,
re+=Get(edge[i].to,now);
return re;
}
inline void Divide(int now)
{
visit[now]=;
hash.clear(); hash[]--;
Dig[now]=0LL,deep[now]=;
DFS(now,);
ans+=Get(now,);
for (int i=head[now]; i; i=edge[i].next)
if (!visit[edge[i].to])
hash.clear(),hash[]--,
Dig[edge[i].to]=edge[i].val%M,deep[edge[i].to]=,
DFS(edge[i].to,now),
ans-=Get(edge[i].to,now);
for (int i=head[now]; i; i=edge[i].next)
if (!visit[edge[i].to])
Sz=size[edge[i].to],f[root=]=N,
Getroot(edge[i].to,now),Divide(root);
}
}
using namespace TreeDivide;
int main()
{
N=read(),M=read();
for (int x,y,z,i=; i<=N-; i++) x=read()+,y=read()+,z=read(),InsertEdge(x,y,z);
for (int i=; i<=N; i++) power[i]=Pow(,i),Inv[i]=inv(power[i]);
Sz=N; f[root=]=N+;
Getroot(,); Divide(root);
printf("%I64d\n",ans);
return ;
}
【Codeforces715C&716E】Digit Tree 数学 + 点分治的更多相关文章
- 【Codeforces 715C】Digit Tree(点分治)
Description 程序员 ZS 有一棵树,它可以表示为 \(n\) 个顶点的无向连通图,顶点编号从 \(0\) 到 \(n-1\),它们之间有 \(n-1\) 条边.每条边上都有一个非零的数字. ...
- CF 716E. Digit Tree [点分治]
题意:一棵树,边上有一个个位数字,走一条路径会得到一个数字,求有多少路径得到的数字可以整除\(P\) 路径统计一般就是点分治了 \[ a*10^{deep} + b \ \equiv \pmod P\ ...
- 【题解】Digit Tree
[题解]Digit Tree CodeForces - 716E 呵呵以为是数据结构题然后是淀粉质还行... 题目就是给你一颗有边权的树,问你有多少路径,把路径上的数字顺次写出来,是\(m\)的倍数. ...
- Codeforces 716 E Digit Tree
E. Digit Tree time limit per test 3 seconds memory limit per test 256 megabytes input standard input ...
- hdu 4670 Cube number on a tree(点分治)
Cube number on a tree Time Limit: 20000/10000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/ ...
- 『sumdiv 数学推导 分治』
sumdiv(POJ 1845) Description 给定两个自然数A和B,S为A^B的所有正整数约数和,编程输出S mod 9901的结果. Input Format 只有一行,两个用空格隔开的 ...
- 【POJ1741】Tree(点分治)
[POJ1741]Tree(点分治) 题面 Vjudge 题目大意: 求树中距离小于\(K\)的点对的数量 题解 完全不觉得点分治了.. 简直\(GG\),更别说动态点分治了... 于是来复习一下. ...
- CF716E Digit Tree 点分治
题意: 给出一个树,每条边上写了一个数字,给出一个P,求有多少条路径按顺序读出的数字可以被P整除.保证P与10互质. 分析: 统计满足限制的路径,我们首先就想到了点分治. 随后我们就需要考量,我们是否 ...
- [poj1741][tree] (树/点分治)
Description Give a tree with n vertices,each edge has a length(positive integer less than 1001). Def ...
随机推荐
- 【原】iOS:手把手教你发布代码到CocoaPods(Trunk方式)
Change Log: 2015.08.20 - 添加podspec文件更新方法 2015.08.19 - 首次发布 概述 关于CocoaPods的介绍不在本文的主题范围内,如果你是iOS开发者却不知 ...
- python之(re)正则表达式上
python正则表达式知识预备 正则表达式使用反斜杠" \ "来代表特殊形式或用作转义字符,这里跟Python的语法冲突,因此,Python用" \\\\ "表 ...
- IRIS数据集的分析-数据挖掘和python入门-零门槛
所有内容都在python源码和注释里,可运行! ########################### #说明: # 撰写本文的原因是,笔者在研究博文“http://python.jobbole.co ...
- SQL周、日、月、年数据统计
本文只是记录在项目中用到的统计的SQL语句,记一笔以防忘了 /// <summary> /// 获取统计数据 /// </summary> /// <param name ...
- 对iOS后台模式最多10分钟运行时间的进一步理解
在app进入后台时,系统初始默认是只有10s的处理时间,但如果10s不够,我们可以主动申请,网上流传最多的一个说法是10分钟. 但这种说法有个前提: 那就是iOS7之前,是这样 但从iOS7开始,我们 ...
- linux 排序命令sort
sort [选项] [文件] 选项: -b:忽略每行前面开始出的空格字符: -c:检查文件是否已经按照顺序排序: -d:排序时,处理英文字母.数字及空格字符外,忽略其他的字符: -f:排序时,将小写字 ...
- C++使用binder实例
Android系统最常见也是初学者最难搞明白的就是Binder了,很多很多的Service就是通过Binder机制来和客户端通讯交互的.所以搞明白Binder的话,在很大程度上就能理解程序运行的流程. ...
- JSP连接数据库,报Unable to compile class for JSP
先看一下报错原因: HTTP Status 500 - Unable to compile class for JSP: type Exception report message Unable to ...
- JAVA类的静态加载和动态加载以及NoClassDefFoundError和ClassNotFoundException
我们都知道Java初始化一个类的时候可以用new 操作符来初始化, 也可通过Class.forName()的方式来得到一个Class类型的实例,然后通过这个Class类型的实例的newInstance ...
- log4j.properties配置详解
1.Loggers Loggers组件在此系统中被分为五个级别:DEBUG.INFO.WARN.ERROR和FATAL.这五个级别是有顺序的,DEBUG < INFO < WARN < ...