C. Digit Tree

time limit per test:3 seconds
memory limit per test:256 megabytes
input:standard input
output:standard output

ZS the Coder has a large tree. It can be represented as an undirected connected graph of n vertices numbered from 0 to n - 1 and n - 1edges between them. There is a single nonzero digit written on each edge.

One day, ZS the Coder was bored and decided to investigate some properties of the tree. He chose a positive integer M, which iscoprime to 10, i.e. .

ZS consider an ordered pair of distinct vertices (u, v) interesting when if he would follow the shortest path from vertex u to vertex v and write down all the digits he encounters on his path in the same order, he will get a decimal representaion of an integer divisible by M.

Formally, ZS consider an ordered pair of distinct vertices (u, v) interesting if the following states true:

  • Let a1 = u, a2, ..., ak = v be the sequence of vertices on the shortest path from u to v in the order of encountering them;
  • Let di (1 ≤ i < k) be the digit written on the edge between vertices ai and ai + 1;
  • The integer  is divisible by M.

Help ZS the Coder find the number of interesting pairs!

Input

The first line of the input contains two integers, n and M (2 ≤ n ≤ 100 000, 1 ≤ M ≤ 109, ) — the number of vertices and the number ZS has chosen respectively.

The next n - 1 lines contain three integers each. i-th of them contains ui, vi and wi, denoting an edge between vertices ui and vi with digit wi written on it (0 ≤ ui, vi < n,  1 ≤ wi ≤ 9).

Output

Print a single integer — the number of interesting (by ZS the Coder's consideration) pairs.

Examples

input
6 7
0 1 2
4 2 4
2 0 1
3 0 9
2 5 7
output
7
input
5 11
1 2 3
2 0 3
3 0 3
4 3 3
output
8

Note

In the first sample case, the interesting pairs are (0, 4), (1, 2), (1, 5), (3, 2), (2, 5), (5, 2), (3, 5). The numbers that are formed by these pairs are 14, 21, 217, 91, 7, 7, 917 respectively, which are all multiples of 7. Note that (2, 5) and (5, 2) are considered different.

In the second sample case, the interesting pairs are (4, 0), (0, 4), (3, 2), (2, 3), (0, 1), (1, 0), (4, 1), (1, 4), and 6 of these pairs give the number 33 while 2 of them give the number 3333, which are all multiples of 11.

Solution

一道比较好想好写的点分治

点分治显然,考虑如何计算复合的路径条数。

对于每个点我们维护两个值$Dig[x],Dig'[x]$,表示重心到这个点的路径组成的数,以及这个点到重心组成的数

这样对于一个点对$<u,v>$我们可以知道他们的$Dig[u],Dig[v],Dig'[u],Dig'[v]$,那么他们所组成的数就是$Dig'[u]*10^{k}+Dig[v]$

这个$k$我们发现,就相当于是$deep[u]$,知道这些就有思路搞了

题目的要求就是$Dig<u,v>mod M=0$也就可以转化成$Dig'[u]*10^{deep[u]}+Dig[v]\equiv 0(modM)$

然后整理一下就可以得到$Dig'[u]\equiv -Dig[v]*\frac{1}{10^{deep[u]}}$

然后用map存一下式子右边,对于一个点,它对答案的贡献就是hash表里的$Dig'[u]$的数量

Code

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<map>
using namespace std;
#define LL long long
inline int read()
{
int x=,f=; char ch=getchar();
while (ch<'' || ch>'') {if (ch=='-') f=-; ch=getchar();}
while (ch>='' && ch<='') {x=x*+ch-''; ch=getchar();}
return x*f;
}
#define MAXN 100010
int N,M;
map<LL,LL>hash;
LL ans;
namespace Math
{
LL power[MAXN],Inv[MAXN];
inline LL Gcd(LL a,LL b) {if (!b) return a; else return Gcd(b,a%b);}
inline void ExGcd(LL a,LL b,LL &x,LL &y) {if (!b) {x=,y=; return;} ExGcd(b,a%b,y,x); y-=(a/b)*x;}
inline LL inv(LL X) {LL x,y; ExGcd(X,M,x,y); return (x%M+M)%M;}
inline LL Pow(LL x,LL y) {LL re=; for (LL i=y; i; i>>=,x=x*x%M) if (i&) re=re*x%M; return re;}
}
using namespace Math;
namespace TreeDivide
{
struct EdgeNode{int next,to,val;}edge[MAXN<<];
int head[MAXN],cnt=;
inline void AddEdge(int u,int v,int w) {cnt++; edge[cnt].to=v; edge[cnt].next=head[u]; head[u]=cnt; edge[cnt].val=w;}
inline void InsertEdge(int u,int v,int w) {AddEdge(u,v,w); AddEdge(v,u,w);}
int size[MAXN],f[MAXN],visit[MAXN],root,deep[MAXN],Sz;
LL Dig[MAXN];
inline void Getroot(int x,int last)
{
size[x]=,f[x]=;
for (int i=head[x]; i; i=edge[i].next)
if (!visit[edge[i].to] && edge[i].to!=last)
{
Getroot(edge[i].to,x);
size[x]+=size[edge[i].to];
f[x]=max(f[x],size[edge[i].to]);
}
f[x]=max(f[x],Sz-f[x]);
if (f[x]<f[root]) root=x;
}
inline void DFS(int now,int last)
{
LL D=(((M-Dig[now])+M)%M*Inv[deep[now]])%M; hash[D]++;
for (int i=head[now]; i; i=edge[i].next)
if (edge[i].to!=last && !visit[edge[i].to])
deep[edge[i].to]=deep[now]+,
Dig[edge[i].to]=(Dig[now]*%M+edge[i].val)%M,
DFS(edge[i].to,now);
}
inline LL Get(int now,int last)
{
LL re=hash[Dig[now]];
for (int i=head[now]; i; i=edge[i].next)
if (edge[i].to!=last && !visit[edge[i].to])
Dig[edge[i].to]=(edge[i].val*power[deep[now]]%M+Dig[now])%M,
deep[edge[i].to]=deep[now]+,
re+=Get(edge[i].to,now);
return re;
}
inline void Divide(int now)
{
visit[now]=;
hash.clear(); hash[]--;
Dig[now]=0LL,deep[now]=;
DFS(now,);
ans+=Get(now,);
for (int i=head[now]; i; i=edge[i].next)
if (!visit[edge[i].to])
hash.clear(),hash[]--,
Dig[edge[i].to]=edge[i].val%M,deep[edge[i].to]=,
DFS(edge[i].to,now),
ans-=Get(edge[i].to,now);
for (int i=head[now]; i; i=edge[i].next)
if (!visit[edge[i].to])
Sz=size[edge[i].to],f[root=]=N,
Getroot(edge[i].to,now),Divide(root);
}
}
using namespace TreeDivide;
int main()
{
N=read(),M=read();
for (int x,y,z,i=; i<=N-; i++) x=read()+,y=read()+,z=read(),InsertEdge(x,y,z);
for (int i=; i<=N; i++) power[i]=Pow(,i),Inv[i]=inv(power[i]);
Sz=N; f[root=]=N+;
Getroot(,); Divide(root);
printf("%I64d\n",ans);
return ;
}

【Codeforces715C&716E】Digit Tree 数学 + 点分治的更多相关文章

  1. 【Codeforces 715C】Digit Tree(点分治)

    Description 程序员 ZS 有一棵树,它可以表示为 \(n\) 个顶点的无向连通图,顶点编号从 \(0\) 到 \(n-1\),它们之间有 \(n-1\) 条边.每条边上都有一个非零的数字. ...

  2. CF 716E. Digit Tree [点分治]

    题意:一棵树,边上有一个个位数字,走一条路径会得到一个数字,求有多少路径得到的数字可以整除\(P\) 路径统计一般就是点分治了 \[ a*10^{deep} + b \ \equiv \pmod P\ ...

  3. 【题解】Digit Tree

    [题解]Digit Tree CodeForces - 716E 呵呵以为是数据结构题然后是淀粉质还行... 题目就是给你一颗有边权的树,问你有多少路径,把路径上的数字顺次写出来,是\(m\)的倍数. ...

  4. Codeforces 716 E Digit Tree

    E. Digit Tree time limit per test 3 seconds memory limit per test 256 megabytes input standard input ...

  5. hdu 4670 Cube number on a tree(点分治)

    Cube number on a tree Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/ ...

  6. 『sumdiv 数学推导 分治』

    sumdiv(POJ 1845) Description 给定两个自然数A和B,S为A^B的所有正整数约数和,编程输出S mod 9901的结果. Input Format 只有一行,两个用空格隔开的 ...

  7. 【POJ1741】Tree(点分治)

    [POJ1741]Tree(点分治) 题面 Vjudge 题目大意: 求树中距离小于\(K\)的点对的数量 题解 完全不觉得点分治了.. 简直\(GG\),更别说动态点分治了... 于是来复习一下. ...

  8. CF716E Digit Tree 点分治

    题意: 给出一个树,每条边上写了一个数字,给出一个P,求有多少条路径按顺序读出的数字可以被P整除.保证P与10互质. 分析: 统计满足限制的路径,我们首先就想到了点分治. 随后我们就需要考量,我们是否 ...

  9. [poj1741][tree] (树/点分治)

    Description Give a tree with n vertices,each edge has a length(positive integer less than 1001). Def ...

随机推荐

  1. android中的线程池学习笔记

    阅读书籍: Android开发艺术探索 Android开发进阶从小工到专家 对线程池原理的简单理解: 创建多个线程并且进行管理,提交的任务会被线程池指派给其中的线程进行执行,通过线程池的统一调度和管理 ...

  2. IOS 多线程分类以及多线程的相关操作

    直接附上援助链接:http://www.cnblogs.com/kenshincui/p/3983982.html 分享内容还关联到了生产者与消费者模式(其实看明白了整片文章,也就理解了生产者与消费者 ...

  3. Android 异步任务,通过PHP访问数据库,多线程,线程间通讯

    文章列表MainActivity.java package com.eric.asynctask; import java.io.IOException; import java.util.Array ...

  4. XML语言基础3--Schema

    1.什么是Schema XML Schema是用一套预先规定的XML元素和属性创建的,这些元素和属性定义了XML文档的结构和内容模式. XML Schema规定XML文档实例的结构和每个元素/属性的数 ...

  5. C#委托的介绍(delegate、Action、Func、predicate) --转载

    来源:http://www.cnblogs.com/akwwl/p/3232679.html 委托是一个类,它定义了方法的类型,使得可以将方法当作另一个方法的参数来进行传递.事件是一种特殊的委托. 1 ...

  6. 作业配置规范文档[MS SQL]

    作业配置规范文档(MS SQL) 文档类型 MS SQL数据库作业配置规范文档 创建日期 2015-07-30 版本变化 V3.0 修改记录 修改人 修改日期 版本 修改描述 潇湘隐者 2015-08 ...

  7. js控制复选框checkbox 只能单选

    我们在页面经常会用到单选框,来提供单值选在字段,但是有一个问题就是:一旦选择了就不能去除(即--只要选择了就不能再以空值提交了). 所以为了解决这个问题,用复选框限制单选是一个不错的选择 <sc ...

  8. window.frameElement的使用

    window.frameElement的使用: 返回嵌入当前window对象的元素(比如 <iframe> 或者 <object>),如果当前window对象已经是顶层窗口,则 ...

  9. SQL Like模糊查询一些小知识

    模糊查询: where mc like '值':返回值等同于where mc ='值' where mc like '%值':匹配 名称是 '*值'(以“值”作为结尾)的所有数据,*表示任何值任何长度 ...

  10. redis 集群创建常见几个问题

    Redis配置集群遇到问题及解决方法   配置完所有主节点后,报" ERR Invalid node address specified" 由于Redis-trib.rb 对域名或 ...