简介: 浅谈 Linux 高负载的系统化分析,阿里云系统组工程师杨勇通过对线上各种问题的系统化分析。

讲解 Linux Load 高如何排查的话题属于老生常谈了,但多数文章只是聚焦了几个点,缺少整体排查思路的介绍。所谓 “授人以鱼不如授人以渔”。本文试图建立一个方法和套路,来帮助读者对 Load 高问题排查有一个更全面的认识。

从消除误解开始

没有基线的 Load,是不靠谱的 Load

从接触 Unix/Linux 系统管理的第一天起,很多人就开始接触 System Load Average 这个监控指标了,然而,并非所有人都知道这个指标的真正含义。一般说来,经常能听到以下误解:

  • Load 高是 CPU 负载高……

    传统 Unix 于 Linux 设计不同。Unix 系统,Load 高就是可运行进程多引发的,但对 Linux 来说不是。对 Linux 来说 Load 高可能有两种情况:
  • 系统中处于 R 状态的进程数增加引发的
  • 系统中处于 D 状态的进程数增加引发的
  • Loadavg 数值大于某个值就一定有问题……

    Loadavg 的数值是相对值,受到 CPU 和 IO 设备多少的影响,甚至会受到某些软件定义的虚拟资源的影响。Load 高的判断需要基于某个历史基线 (Baseline),不能无原则的跨系统去比较 Load。
  • Load 高系统一定很忙…..

    Load 高系统可以很忙,例如 CPU 负载高,CPU 很忙。但 Load 高,系统不都很忙,如 IO 负载高,磁盘可以很忙,但 CPU 可以比较空闲,如 iowait 高。这里要注意,iowait 本质上是一种特殊的 CPU 空闲状态。另一种 Load 高,可能 CPU 和磁盘外设都很空闲,可能支持锁竞争引起的,这时候 CPU 时间里,iowait 不高,但 idle 高。

Brendan Gregg 在最近的博客 [Linux Load Averages: Solving the Mystery] (http://www.brendangregg.com/blog/2017-08-08/linux-load-averages.html) 中,讨论了 Unix 和 Linux Load Average 的差异,并且回朔到 24 年前 Linux 社区的讨论,并找到了当时为什么 Linux 要修改 Unix Load Average 的定义。文章认为,正是由于 Linux 引入的 D 状态线程的计算方式,从而导致 Load 高的原因变得含混起来。因为系统中引发 D 状态切换的原因实在是太多了,绝非 IO 负载,锁竞争这么简单!正是由于这种含混,Load 的数值更加难以跨系统,跨应用类型去比较。所有 Load 高低的依据,全都应该基于历史的基线。本微信公众号也曾写过一篇相关文章,可以参见Linux Load Average那些事儿

如何排查 Load 高的问题

如前所述,由于在 Linux 操作系统里,Load 是一个定义及其含混的指标,排查 loadavg 高就是一个很复杂的过程。其基本思路就是,根据引起 Load 变化的根源是 R 状态任务增多,还是 D 状态任务增多,来进入到不同的流程。

这里给出了 Load 增高的排查的一般套路,仅供参考:

在 Linux 系统里,读取 /proc/stat 文件,即可获取系统中 R 状态的进程数;但 D 状态的任务数恐怕最直接的方式还是使用 ps 命令比较方便。而 /proc/stat 文件里 procs_blocked 则给出的是处于等待磁盘 IO 的进程数:

通过简单区分 R 状态任务增多,还是 D 状态任务增多,我们就可以进入到不同的排查流程里。下面,我们就这个大图的排查思路,做一个简单的梳理。

R 状态任务增多

即通常所说的 CPU 负载高。此类问题的排查定位主要思路是系统,容器,进程的运行时间分析上,找到在 CPU 上的热点路径,或者分析 CPU 的运行时间主要是在哪段代码上。

CPU usersys 时间的分布通常能帮助人们快速定位与用户态进程有关,还是与内核有关。另外,CPU 的 run queue 长度和调度等待时间,非主动的上下文切换 (nonvoluntary context switch) 次数都能帮助大致理解问题的场景。

因此,如果要将问题的场景关联到相关的代码,通常需要使用 perfsystemtap, ftrace 这种动态的跟踪工具。

关联到代码路径后,接下来的代码时间分析过程中,代码中的一些无效的运行时间也是分析中首要关注的,例如用户态和内核态中的自旋锁 (Spin Lock)。

当然,如果 CPU 上运行的都是有非常意义,非常有效率的代码,那唯一要考虑的就是,是不是负载真得太大了。

D 状态任务增多

根据 Linux 内核的设计, D 状态任务本质上是 TASK_UNINTERRUPTIBLE 引发的主动睡眠,因此其可能性非常多。但是由于 Linux 内核 CPU 空闲时间上对 IO 栈引发的睡眠做了特殊的定义,即 iowait,因此iowait 成为 D 状态分类里定位是否 Load 高是由 IO 引发的一个重要参考。

当然,如前所述, /proc/stat 中的 procs_blocked 的变化趋势也可以是一个非常好的判定因 iowait引发的 Load 高的一个参考。

CPU iowait

很多人通常都对 CPU iowait 有一个误解,以为 iowait 高是因为这时的 CPU 正在忙于做 IO 操作。其实恰恰相反, iowait 高的时候,CPU 正处于空闲状态,没有任何任务可以运行。只是因为此时存在已经发出的磁盘 IO,因此这时的空闲状态被标识成了 iowait ,而不是 idle

但此时,如果用 perf probe 命令,我们可以清楚得看到,在 iowait 状态的 CPU,实际上是运行在 pid 为 0 的 idle 线程上:

相关的 idle 线程的循环如何分别对 CPU iowaitidle 计数的代码,如下所示:

而 Linux IO 栈和文件系统的代码则会调用 io_schedule,等待磁盘 IO 的完成。这时候,对 CPU 时间被记为 iowait 起关键计数的原子变量 rq->nr_iowait 则会在睡眠前被增加。注意,io_schedule 在被调用前,通常 caller 会先将任务显式地设置成 TASK_UNINTERRUPTIBLE 状态:

CPU idle

如前所述,有相当多的内核的阻塞,即 TASK_UNINTERRUPTIBLE 的睡眠,实际上与等待磁盘 IO 无关,如内核中的锁竞争,再如内存直接页回收的睡眠,又如内核中一些代码路径上的主动阻塞,等待资源。

Brendan Gregg 在最近的博客 [Linux Load Averages: Solving the Mystery] (http://www.brendangregg.com/blog/2017-08-08/linux-load-averages.html)中,使用 perf 命令产生的 TASK_UNINTERRUPTIBLE 的睡眠的火焰图,很好的展示了引起 CPU idle 高的多样性。本文不在赘述。

因此,CPU idle 高的分析,实质上就是分析内核的代码路径引起阻塞的主因是什么。通常,我们可以使用 perf injectperf record 记录的上下文切换的事件进行处理,关联出进程从 CPU 切出 (swtich out) 和再次切入 (switch in) 的内核代码路径,生成一个所谓的 Off CPU 火焰图.

当然,类似于锁竞争这样的比较简单的问题,Off CPU 火焰图足以一步定位出问题。但是对于更加复杂的因 D 状态而阻塞的延迟问题,可能 Off CPU 火焰图只能给我们一个调查的起点。

例如,当我们看到,Off CPU 火焰图的主要睡眠时间是因为 epoll_wait 等待引发的。那么,我们继续要排查的应该是网络栈的延迟,即本文大图中的 Net Delay 这部分。

至此,你也许会发现,CPU iowaitidle 高的性能分析的实质就是 延迟分析。这就是大图按照内核中资源管理的大方向,将延迟分析细化成了六大延迟分析

  • CPU 延迟
  • 内存延迟
  • 文件系统延迟
  • IO 栈延迟
  • 网络栈延迟
  • 锁及同步原语竞争

任何上述代码路径引发的 TASK_UNINTERRUPTIBLE 的睡眠,都是我们要分析的对象!

以问题结束

限于篇幅,本文很难将其所涉及的细节一一展开,因为读到这里,你也许会发现,原来 Load 高的分析,实际上就是对系统的全面负载分析。怪不得叫 System Load 呢。这也是 Load 分析为什么很难在一篇文章里去全面覆盖。

本文也开启了浅谈 Linux 性能分析系列的第一章。后续我们会推出系列文章,就前文所述的六大延迟分析,一一展开介绍,敬请期待……

关于作者

杨勇 (Oliver Yang),Linux 内核工程师,来自阿里云系统组。曾就职于 EMC,Sun 中国工程研究院,在存储系统和 Solaris 内核开发领域工作。

原文链接

本文为阿里云原创内容,未经允许不得转载。

浅谈 Linux 高负载的系统化分析的更多相关文章

  1. 【VS开发】【DSP开发】浅谈Linux PCI设备驱动(二)

    我们在 浅谈Linux PCI设备驱动(一)中(以下简称 浅谈(一) )介绍了PCI的配置寄存器组,而Linux PCI初始化就是使用了这些寄存器来进行的.后面我们会举个例子来说明Linux PCI设 ...

  2. 浅谈 Linux 内核无线子系统

    浅谈 Linux 内核无线子系统 本文目录 1. 全局概览 2. 模块间接口 3. 数据路径与管理路径 4. 数据包是如何被发送? 5. 谈谈管理路径 6. 数据包又是如何被接收? 7. 总结一下 L ...

  3. 浅谈Linux下/etc/passwd文件

    浅谈Linux 下/etc/passwd文件 看过了很多渗透测试的文章,发现在很多文章中都会有/etc/passwd这个文件,那么,这个文件中到底有些什么内容呢?下面我们来详细的介绍一下. 在Linu ...

  4. (转)浅谈 Linux 内核无线子系统

    前言 Linux 内核是如何实现无线网络接口呢?数据包是通过怎样的方式被发送和接收呢? 刚开始工作接触 Linux 无线网络时,我曾迷失在浩瀚的基础代码中,寻找具有介绍性的材料来回答如上面提到的那些高 ...

  5. 浅谈Linux中的信号处理机制(二)

    首先谢谢 @小尧弟 这位朋友对我昨天夜里写的一篇<浅谈Linux中的信号处理机制(一)>的指正,之前的题目我用的“浅析”一词,给人一种要剖析内核的感觉.本人自知功力不够,尚且不能对着Lin ...

  6. []转帖] 浅谈Linux下的五种I/O模型

    浅谈Linux下的五种I/O模型 https://www.cnblogs.com/chy2055/p/5220793.html  一.关于I/O模型的引出 我们都知道,为了OS的安全性等的考虑,进程是 ...

  7. Java网络编程和NIO详解7:浅谈 Linux 中NIO Selector 的实现原理

    Java网络编程和NIO详解7:浅谈 Linux 中NIO Selector 的实现原理 转自:https://www.jianshu.com/p/2b71ea919d49 本系列文章首发于我的个人博 ...

  8. 浅谈linux中shell变量$#,$@,$0,$1,$2,$?的含义解释

    浅谈linux中shell变量$#,$@,$0,$1,$2,$?的含义解释 下面小编就为大家带来一篇浅谈linux中shell变量$#,$@,$0,$1,$2的含义解释.小编觉得挺不错的,现在就分享给 ...

  9. 浅谈linux IO csy 360技术 2021-01-18

    浅谈linux IO csy 360技术 2021-01-18

  10. 浅谈Linux下如何修改IP

    linux 下命令之浅谈//cd ..  //返回上一级//创建文件夹touch test.txt//Linux不区分大小写//往一个文件中追加内容echo "****" > ...

随机推荐

  1. 记录--前端中 JS 发起的请求可以暂停吗

    这里给大家分享我在网上总结出来的一些知识,希望对大家有所帮助 在前端中,JavaScript(JS)可以使用XMLHttpRequest对象或fetch API来发起网络请求.然而,JavaScrip ...

  2. 记录--通过手写,分析axios核心原理

    这里给大家分享我在网上总结出来的一些知识,希望对大家有所帮助 一.axios简介 axios是什么? Axios 是一个基于 promise 的 HTTP 库,可以用在浏览器和 node.js 中. ...

  3. 从0开始设计_基于STM32F1的RC522读写卡

    从0开始设计_基于STM32F1的RC522读写卡 1.介绍看网上很多RC522的教程都是基于读卡ID的,这个对于很多应用来说其实没有什么用,最近刚好有个项目需要读写卡,而RC522又是非常常用的且不 ...

  4. verilog之wire和reg

    verilog之wire和reg 1.区别 wire为线,reg为寄存器.至少初期这两个名词的意思是这样的.wire在电路设计中指代的就是某个点的逻辑值,而reg则指代某个寄存器输出的逻辑值.这个理解 ...

  5. GIT:斯坦福大学提出应对复杂变换的不变性提升方法 | ICLR 2022

    论文对长尾数据集中的复杂变换不变性进行了研究,发现不变性在很大程度上取决于类别的图片数量,实际上分类器并不能将从大类中学习到的不变性转移到小类中.为此,论文提出了GIT生成模型,从数据集中学习到类无关 ...

  6. RepVGG:VGG,永远的神! | CVPR 2021

    RepVGG将训练推理网络结构进行独立设计,在训练时使用高精度的多分支网络学习权值,在推理时使用低延迟的单分支网络,然后通过结构重参数化将多分支网络的权值转移到单分支网络.RepVGG性能达到了SOT ...

  7. ue4-c++定时器和时间轴简易模板

    定时器Delay 在头文件中需要声明TimerHandle和功能函数,功能函数是计时结束后执行的功能 在源文件中利用GetWorldTimerManager()实现定时器的开启(绑定功能函数)和清除. ...

  8. Fast多维数组

    #include<iostream> #include<chrono> struct Timer { std::chrono::time_point<std::chron ...

  9. #树形dp,树链剖分#CF442D Adam and Tree

    题目 初始有一个点 1,每次新加入点 \(2\sim n+1\),给这条边染上新的颜色, 并且一种颜色只能出现在一条路径上,使得每个点到根节点的路径上颜色种类数尽量少 每次询问输出每个点到根节点路径上 ...

  10. Linux获取摄像头VID,PID的两种方式

    第一种方式,是直接查询设备的vid.pid文件,来获取vid,pid 第二种方式,是查询设备信息,自己去解析对应的vid和pid 正常情况下,第一种方式就可以了,但是今天遇到一个ARM架构的kylin ...