POJ1221(整数划分)
UNIMODAL PALINDROMIC DECOMPOSITIONS
| Time Limit: 1000MS | Memory Limit: 65536K | |
| Total Submissions: 5430 | Accepted: 2641 |
Description
23 11 15 1 37 37 1 15 11 23
1 1 2 3 4 7 7 10 7 7 4 3 2 1 1
A Palindromic sequence is Unimodal Palindromic if the values do not decrease up to the middle value and then (since the sequence is palindromic) do not increase from the middle to the end For example, the first example sequence above is NOT Unimodal Palindromic while the second example is.
A Unimodal Palindromic sequence is a Unimodal Palindromic Decomposition of an integer N, if the sum of the integers in the sequence is N. For example, all of the Unimodal Palindromic Decompositions of the first few integers are given below:
1: (1)
2: (2), (1 1)
3: (3), (1 1 1)
4: (4), (1 2 1), (2 2), (1 1 1 1)
5: (5), (1 3 1), (1 1 1 1 1)
6: (6), (1 4 1), (2 2 2), (1 1 2 1 1), (3 3),
(1 2 2 1), ( 1 1 1 1 1 1)
7: (7), (1 5 1), (2 3 2), (1 1 3 1 1), (1 1 1 1 1 1 1)
8: (8), (1 6 1), (2 4 2), (1 1 4 1 1), (1 2 2 2 1),
(1 1 1 2 1 1 1), ( 4 4), (1 3 3 1), (2 2 2 2),
(1 1 2 2 1 1), (1 1 1 1 1 1 1 1)
Write a program, which computes the number of Unimodal Palindromic Decompositions of an integer.
Input
Output
Sample Input
2
3
4
5
6
7
8
10
23
24
131
213
92
0
Sample Output
2 2
3 2
4 4
5 3
6 7
7 5
8 11
10 17
23 104
24 199
131 5010688
213 1055852590
92 331143
题意:
给一个正整数,求出它的Unimodal Palindromic的个数,所谓的Unimodal Palindromic就是一系列数,单调递增再递减,并且第一个和最后一个数相同,第二个跟倒数第二个数相同,即第i个跟第n-i+1个数相同。
思路:
把它的Unimodal Palindromic分成两部分:一部分是最小数是j的,就是第一个跟最后一个数等于j的有几个;第二部分是最小数大于j的,可以是j+1,j+2…..的有几个。
dp[i][j]表示和为i,最小数是j的序列的个数。那么第一部分就是dp[i-j*2][j],
意思就是和为去掉了首尾两个数后的和,最小数是j;第二部分就是dp[i][j+1].最小数大于j的情况的个数。状态转移方程:
dp[i][j] = dp[i-2*j][j] + dp[i][j+1]
初始化:
①.dp[0][j]初始值1.因为当需要调用dp[0][j]时,表示拆成了两个相同的数。有一个
②.dp[i][j](i<j< font="">)初始值0,不可能的情况
③.dp[i][j] (i>=j >i/2) 初始值1,j>i/2时所有s[i][j]都是1,那个就是i本身。
//2016.8.22
#include<cstdio>
#include<cstring>
#define ll long long using namespace std; const int N = ;
ll dp[N][N]; int main()
{
int n;
memset(dp, , sizeof(dp));
for(int i = ; i < N; i++)
dp[][i] = ;
for(int i = ; i < N; i++)
for(int j = i/+; j <= i; j++)
dp[i][j] = ;
for(int i = ; i < N; i++)
for(int j = i/; j > ; j--)
dp[i][j] = dp[i-*j][j]+dp[i][j+];
while(scanf("%d", &n)!=EOF && n)
{
printf("%d %lld\n", n, dp[n][]);
} return ;
}
POJ1221(整数划分)的更多相关文章
- 51nod p1201 整数划分
1201 整数划分 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 将N分为若干个不同整数的和,有多少种不同的划分方式,例如:n = 6,{6} {1,5} {2, ...
- 2014北大研究生推免机试(校内)-复杂的整数划分(DP进阶)
这是一道典型的整数划分题目,适合正在研究动态规划的同学练练手,但是和上一个随笔一样,我是在Coursera中评测通过的,没有找到适合的OJ有这一道题(找到的ACMer拜托告诉一声~),这道题考察得较全 ...
- 整数划分 (区间DP)
整数划分(四) 时间限制:1000 ms | 内存限制:65535 KB 难度:3 描述 暑假来了,hrdv 又要留学校在参加ACM集训了,集训的生活非常Happy(ps:你懂得),可是他最近 ...
- nyoj 90 整数划分
点击打开链接 整数划分 时间限制:3000 ms | 内存限制:65535 KB 难度:3 描述 将正整数n表示成一系列正整数之和:n=n1+n2+-+nk, 其中n1≥n2≥-≥nk≥1,k≥ ...
- 整数划分 Integer Partition(二)
本文是整数划分的第二节,主要介绍整数划分的一些性质. 一 先来弥补一下上一篇文章的遗留问题:要求我们所取的 (n=m1+m2+...+mi )中 m1 m2 ... mi连续,比如5=1+4就不符合 ...
- 整数划分 Integer Partition(一)
话说今天百度面试,可能是由于我表现的不太好,面试官显得有点不耐烦,说话的语气也很具有嘲讽的意思,搞得我有点不爽.Whatever,面试中有问到整数划分问题,回答这个问题过程中被面试官搞的不胜其烦,最后 ...
- 51nod1201 整数划分
01背包显然超时.然后就是一道神dp了.dp[i][j]表示j个数组成i的方案数.O(nsqrt(n)) #include<cstdio> #include<cstring> ...
- NYOJ-571 整数划分(三)
此题是个非常经典的题目,这个题目包含了整数划分(一)和整数划分(二)的所有情形,而且还增加了其它的情形,主要是用递归或者说是递推式来解,只要找到了递推式剩下的任务就是找边界条件了,我觉得边界也是非常重 ...
- BZOJ1263: [SCOI2006]整数划分
1263: [SCOI2006]整数划分 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 677 Solved: 332[Submit][Status] ...
随机推荐
- PHP 代码跟踪
怎么知道代码的执行过程呢,也就是说怎么知道:是先执行哪些代码,然后执行哪些代码呢? 这里有一个非常犀利的函数,可以让你知道代码的执行过程 debug_backtrace() 函数. 来一段代码: L ...
- angularJs-UI-bootstrap系列教程2(According)
废话不说上代码 angular.module('MyApp', ['ngAnimate', 'ngTouch', 'ui.bootstrap']) .controller('accordionCtrl ...
- BNU OJ 50999 BQG's Approaching Deadline
#include<cstdio> #include<algorithm> using namespace std; +; struct Homework { long long ...
- fixed定位与absolute定位
相同点: 1.fixed定位和absolute定位都是绝对定位 2.fixed定位和absolute定位都脱离了标准文档流, 3.未设置偏移量时,都定位在父元素的左上角 tip:元素设置相对定位或绝对 ...
- cron 执行php文件
php执行的命令要写全路径,不然无法执行
- KERMIT,XMODEM,YMODEM,ZMODEM传输协议小结(转)
源:KERMIT,XMODEM,YMODEM,ZMODEM传输协议小结 Kermit协议 报文格式: 1.MARK,起始标记START_CHAR,为 0x01(CTRIL-A): 2.LEN,报文剩余 ...
- ajax--2017年1月15日
听说点六下就能复制了? ajax: 一般处理程序(数据接口):ashx 跨语言传递数据:xml: 结构不清晰 代码量比较大 查找起来比较费事 非面向对象结构 json: 结构清晰 代码量相对较小 面向 ...
- 浅析IoC框架
今日拜读了一篇关于IOC的文章,特意转载,和大家分享一下 1 IoC理论的背景 我们都知道,在采用面向对象方法设计的软件系统中,它的底层实现都是由N个对象组成的,所有的对象通过彼此的合作,最终实 ...
- 设置MyEclipse黑色主题背景
设置MyEclipse黑色主题背景 1. 下载 http://eclipsecolorthemes.org/ 看哪个合适直接点击进入, 下载右边的epf 2. 下载完成...打开myeclipse. ...
- 代码中引用res里的颜色、图片
1.imageButton userImgButton 在代码中设置图片,使用res/Drawable 里的图片 Resources res = getResources(); Bitmap inDr ...