HDU 4408 Minimum Spanning Tree 最小生成树计数
Minimum Spanning Tree
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
【Sample Output】
【题意】
一张无向图,要求求出其中最小生成树的棵树。
【分析】
生成树计数可以使用Matrix-Tree定理解决,本题最主要的区别是有了一个最小生成树的额外条件。
首先考虑一下如何得到最小生成树。
Kruskal算法的基本思想是,按照边长排序,然后不断将短边加入集合,最终一步如果能成功把n-1条边都加入同一个集合,则找到了最小生成树。在维护集合时,可以使用并查集来快速处理。
如果把Kruskal的过程按照边长划分成多个阶段,实际上是处理了所有短边的连通性之后继续处理下一个长度的边的连通性,并依次继续处理剩下边的连通性。然后我们可以发现,不同长度的边之间的连通性互不影响!!!
假设存在n1条长度为c1的边,n2条长度为c2的边...则Kruskal首先处理c1边的连通性,然后处理c2边的连通性,对于c1边的连通性的处理可能有多种方案,即从n1条边中取出一定数量的边构成最大连通图,但是最终处理完之后的结果对于c2来说是完全一样的。因此算法就出来了,在Kruskal的基础上,使用Matrix-Tree定理处理每个阶段生成树的种数,最后将所有阶段的结果相乘即可。
具体实现为:
在Kruskal的基础上,每完成一个阶段(检查完一个长度),就将所有遍历过的点缩成一个点,然后用Matrix-Tree定理计算该点与下一组点组成的连通图中生成树的个数。最终把每一个阶段的结果相乘即可。
/* ***********************************************
MYID : Chen Fan
LANG : G++
PROG : Counting_MST_HDU4408
************************************************ */ #include <vector>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <bitset>
#define N 405
#define M 4005 using namespace std; typedef struct nod
{
int a,b,c;
} node;
node edge[M]; bool op(node a,node b)
{
return a.c<b.c;
} int n,m,o,fa[N],ka[N];
long long ans,mod,gk[N][N],kir[N][N]; bitset<N> flag;
vector<int> gra[N]; int getfather(int x,int father[])
{
if (father[x]!=x) father[x]=getfather(father[x],father);
return father[x];
} long long det(long long a[][N],int n) //Matrix-Tree定理求Kirchhoff矩阵
{
for (int i=;i<n;i++)
for (int j=;j<n;j++) a[i][j]%=mod;
long long ret=;
for (int i=;i<n;i++)
{
for (int j=i+;j<n;j++)
while (a[j][i])
{
long long t=a[i][i]/a[j][i];
for (int k=i;k<n;k++) a[i][k]=(a[i][k]-a[j][k]*t)%mod;
for (int k=i;k<n;k++) swap(a[i][k],a[j][k]);
ret=-ret;
}
if (a[i][i]==) return ;
ret=ret*a[i][i]%mod;
//ret%=mod;
}
return (ret+mod)%mod;
} void matrix_tree()
{
for (int i=;i<=n;i++) //根据访问标记找出连通分量
if (flag[i])
{
gra[getfather(i,ka)].push_back(i);
flag[i]=;
}
for (int i=;i<=n;i++)
if (gra[i].size()>) //枚举连通分量
{
memset(kir,,sizeof(kir)); int len=gra[i].size();
for (int a=;a<len;a++)
for (int b=a+;b<len;b++)
{
int la=gra[i][a],lb=gra[i][b];
kir[b][a]-=gk[la][lb];
kir[a][b]=kir[b][a];
kir[a][a]+=gk[la][lb];
kir[b][b]+=gk[la][lb];
} //构造矩阵 long long ret=det(kir,len);
ret%=mod;
ans=(ans*ret%mod)%mod; for (int a=;a<len;a++) fa[gra[i][a]]=i;
}
for (int i=;i<=n;i++) //连通图缩点+初始化
{
fa[i]=getfather(i,fa);
ka[i]=fa[i];
gra[i].clear();
}
} int main()
{
freopen("4408.txt","r",stdin); while (scanf("%d%d%lld",&n,&m,&mod)==)
{ if (n==&&m==&&mod==) break;
for (int i=;i<=m;i++) scanf("%d%d%d",&edge[i].a,&edge[i].b,&edge[i].c);
sort(&edge[],&edge[m+],op); for (int i=;i<=n;i++) gra[i].clear();
for (int i=;i<=n;i++)
{
fa[i]=i;
ka[i]=i;
}
flag.reset();
memset(gk,,sizeof(gk));
ans=;
o=edge[].c;
for (int i=;i<=m;i++)
{
int pa=getfather(edge[i].a,fa),pb=getfather(edge[i].b,fa);
if (pa!=pb)
{
flag[pa]=;
flag[pb]=; //访问标记
ka[getfather(pa,ka)]=getfather(pb,ka);
gk[pa][pb]++;
gk[pb][pa]++; //邻接矩阵
}
if (i==m||edge[i+].c!=o) //所有相同的边并成一组
{
matrix_tree();
o=edge[i+].c;
}
} bool done=true;
for (int i=;i<=n;i++)
if(ka[i]!=ka[i-])
{
done=false;
break;
}
if (!done) printf("0\n");
else
{
ans%=mod;
printf("%lld\n",ans);
}
} return ;
}
HDU 4408 Minimum Spanning Tree 最小生成树计数的更多相关文章
- hdu 4408 Minimum Spanning Tree
Problem Description XXX is very interested in algorithm. After learning the Prim algorithm and Krusk ...
- 数据结构与算法分析–Minimum Spanning Tree(最小生成树)
给定一个无向图,如果他的某个子图中,任意两个顶点都能互相连通并且是一棵树,那么这棵树就叫做生成树(spanning tree). 如果边上有权值,那么使得边权和最小的生成树叫做最小生成树(MST,Mi ...
- 【算法】关于图论中的最小生成树(Minimum Spanning Tree)详解
本节纲要 什么是图(network) 什么是最小生成树 (minimum spanning tree) 最小生成树的算法 什么是图(network)? 这里的图当然不是我们日常说的图片或者地图.通常情 ...
- 【HDU 4408】Minimum Spanning Tree(最小生成树计数)
Problem Description XXX is very interested in algorithm. After learning the Prim algorithm and Krusk ...
- Educational Codeforces Round 3 E. Minimum spanning tree for each edge 最小生成树+树链剖分+线段树
E. Minimum spanning tree for each edge time limit per test 2 seconds memory limit per test 256 megab ...
- 说说最小生成树(Minimum Spanning Tree)
minimum spanning tree(MST) 最小生成树是连通无向带权图的一个子图,要求 能够连接图中的所有顶点.无环.路径的权重和为所有路径中最小的. graph-cut 对图的一个切割或者 ...
- 最小生成树(Minimum Spanning Tree)——Prim算法与Kruskal算法+并查集
最小生成树——Minimum Spanning Tree,是图论中比较重要的模型,通常用于解决实际生活中的路径代价最小一类的问题.我们首先用通俗的语言解释它的定义: 对于有n个节点的有权无向连通图,寻 ...
- 多校 HDU - 6614 AND Minimum Spanning Tree (二进制)
传送门 AND Minimum Spanning Tree Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 ...
- CF# Educational Codeforces Round 3 E. Minimum spanning tree for each edge
E. Minimum spanning tree for each edge time limit per test 2 seconds memory limit per test 256 megab ...
随机推荐
- SQL Server 2008删除或压缩数据库日志的方法
SQL Server 2008删除或压缩数据库日志的方法 2010-09-20 20:15 由 于数据库日志增长被设置为“无限制”,所以时间一长日志文件必然会很大,一个400G的数据库居然有600G的 ...
- Setup a private http/nginx based GIT server
原文:http://aaba.me/blog/2014/03/setup-a-private-http-nginx-based-git-server.html https://doomzhou.git ...
- String.Format(string, arg0)中sring格式
复合格式字符串和对象列表将用作支持复合格式设置功能的方法的参数.复合格式字符串由零个或多个固定文本段与一个或多个格式项混和组成.固定文本是所选择的任何字符串,并且每个格式项对应于列表中的一个对象或装箱 ...
- Hibernate 系列教程1-枚举单例类
你还在为不知道怎样正确使用Hibernate而纠结吗 你还在为不知道怎样配置映射文件而郁闷吗 枚举单例(Enum Singleton) 是实现单例模式的一种方式而已,不过写法简单,创建枚举默认也是线程 ...
- ios view改变背景图
一般我们设置 一个view的背景 可以通过 在view上放一个imageView 来显示背景图片 这里介绍另外一种方法 可以直接通过改变view.backgroundColor的值 来达到上面的效 ...
- 网络获取的XML的Pull解析
<?xml version="1.0" encoding="utf-8" ?> - <students> - <student x ...
- [转]解决LinearLayout中控件不能居右对齐
在LinearLayout布局时使用右对齐(android:layout_gravity="right")控件对齐方式不生效,需要设置 android:layout_weight= ...
- UIImage 和 UIImageView区别
// // ViewController.m // 06-UIImage 和 UIImageView // // Created by Stephen on 16/4/18. // Copyright ...
- cocos2d-x 3.3 显示中文
Resources文件夹下的strings.xml: <dict> <key>targetScore</key> <string>目标分数</st ...
- android 多个shortCut快捷方式实现以及对58同城快捷方式的实现思路的研究
这几天,项目中有个新需求,需要按照模块添加不同的快捷方式到桌面上,从而方便用户的使用.特意进行了研究并分析了下58上面桌面快捷方式的实现. 首先多个shortcut的实现: <activity ...