pid=3572">Task Schedule

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 3412    Accepted Submission(s): 1197

Problem Description
Our geometry princess XMM has stoped her study in computational geometry to concentrate on her newly opened factory. Her factory has introduced M new machines in order to process the coming N tasks. For the i-th task, the factory has to start processing it
at or after day Si, process it for Pi days, and finish the task before or at day Ei. A machine can only work on one task at a time, and each task can be processed by at most one machine at a time. However, a task can be interrupted and processed on different
machines on different days. 

Now she wonders whether he has a feasible schedule to finish all the tasks in time. She turns to you for help.
 
Input
On the first line comes an integer T(T<=20), indicating the number of test cases.



You are given two integer N(N<=500) and M(M<=200) on the first line of each test case. Then on each of next N lines are three integers Pi, Si and Ei (1<=Pi, Si, Ei<=500), which have the meaning described in the description. It is guaranteed that in a feasible
schedule every task that can be finished will be done before or at its end day.
 
Output
For each test case, print “Case x: ” first, where x is the case number. If there exists a feasible schedule to finish all the tasks, print “Yes”, otherwise print “No”.



Print a blank line after each test case.
 
Sample Input
2
4 3
1 3 5
1 1 4
2 3 7
3 5 9 2 2
2 1 3
1 2 2
 
Sample Output
Case 1: Yes Case 2: Yes
 
Author
allenlowesy
 

思路:建一个超级源点0,然后如果工作区间长度为T ,再建立[1,T]个点,源点到每一个点的流量为M(每天仅仅有M台机器工作)。接着。把对应的工作日向后平移T 天,每一个工作日到对应的[1,T]的流量为1,到终点的流量也为1.

最后求最大流是否大于等于总总工作量就是了。

#include"stdio.h"
#include"string.h"
#include"queue"
using namespace std;
#define N 1005
#define max(a,b) (a>b?a:b)
#define min(a,b) (a<b?a:b)
const int inf=0x7ffffff;
int cnt,n,m,t;
int head[N],q[N],dis[N];
struct node
{
int u,v,w,next;
}map[N*N];
void add(int u,int v,int w)
{
map[cnt].u=u;
map[cnt].v=v;
map[cnt].w=w;
map[cnt].next=head[u];
head[u]=cnt++;
map[cnt].u=v;
map[cnt].v=u;
map[cnt].w=0;
map[cnt].next=head[v];
head[v]=cnt++;
}
int bfs()
{
int i,u,v,t1,t2;
memset(dis,0,sizeof(dis));
u=t1=t2=0;
dis[u]=1;
q[t1++]=u;
while(t2<t1)
{
u=q[t2++];
for(i=head[u];i!=-1;i=map[i].next)
{
v=map[i].v;
if(map[i].w&&!dis[v])
{
dis[v]=dis[u]+1;
if(v==t)
return 1;
q[t1++]=v;
}
}
}
return 0;
}
int dfs(int s,int lim)
{
int i,tmp,v,cost=0;
if(s==t)
return lim;
for(i=head[s];i!=-1;i=map[i].next)
{
v=map[i].v;
if(map[i].w&&dis[s]==dis[v]-1)
{
tmp=dfs(v,min(lim-cost,map[i].w));
if(tmp>0)
{
map[i].w-=tmp;
map[i^1].w+=tmp;
cost+=tmp;
if(cost==lim)
break;
}
else
dis[v]=-1;
}
}
return cost;
}
int dinic()
{
int ans=0,s=0;
while(bfs())
ans+=dfs(s,inf); //printf("%d\n",ans);
return ans;
}
int main()
{
int i,j,T,sum,t1,t2,cas=1;
int s[505],e[505],p[505];
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
t1=N;t2=0;
sum=0;
for(i=1;i<=n;i++)
{
scanf("%d%d%d",&p[i],&s[i],&e[i]);
t1=min(t1,s[i]);
t2=max(t2,e[i]);
sum+=p[i];
}
cnt=0;
memset(head,-1,sizeof(head));
for(i=t1;i<=t2;i++) //超级源点到一般源点的流量
{
add(0,i,m);
}
for(i=1;i<=n;i++)
{
for(j=s[i];j<=e[i];j++)
{
add(j,j+t2,1);
add(j+t2,2*t2,1);
}
}
t=t2*2;
if(sum<=dinic())
printf("Case %d: Yes\n\n",cas++);
else
printf("Case %d: No\n\n",cas++);
}
return 0;
}

版权声明:本文博客原创文章,博客,未经同意,不得转载。

hdu 3572 Task Schedule (dinic算法)的更多相关文章

  1. hdu 3572 Task Schedule (Dinic模板)

    Problem Description Our geometry princess XMM has stoped her study in computational geometry to conc ...

  2. HDU 3572 Task Schedule(拆点+最大流dinic)

    Task Schedule Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) To ...

  3. hdu 3572 Task Schedule(最大流&amp;&amp;建图经典&amp;&amp;dinic)

    Task Schedule Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) To ...

  4. hdu 3572 Task Schedule 网络流

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3572 Our geometry princess XMM has stoped her study i ...

  5. HDU 3572 Task Schedule (最大流)

    C - Task Schedule Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

  6. hdu 3572 Task Schedule

    Task Schedule 题意:有N个任务,M台机器.每一个任务给S,P,E分别表示该任务的(最早开始)开始时间,持续时间和(最晚)结束时间:问每一个任务是否能在预定的时间区间内完成: 注:每一个任 ...

  7. hdu 3572 Task Schedule(最大流)2010 ACM-ICPC Multi-University Training Contest(13)——Host by UESTC

    题意: 告诉我们有m个任务和k个机器.第i个任务需要ci天完成,最早从第ai天开始,最晚在第bi天结束.每台机器每天可以执行一个任务.问,是否可以将所有的任务都按时完成? 输入: 首行输入一个整数t, ...

  8. 解题报告:hdu 3572 Task Schedule(当前弧优化Dinic算法)

    Problem Description Our geometry princess XMM has stoped her study in computational geometry to conc ...

  9. 图论--网络流--最大流 HDU 3572 Task Schedule(限流建图,超级源汇)

    Problem Description Our geometry princess XMM has stoped her study in computational geometry to conc ...

随机推荐

  1. java 调用mysql的存储过程(简单示例)

    首先我在mysql的test数据库里定义了一个student表: create table student4( id   int   primary key, sanme char(5) ); 插入几 ...

  2. jquery和highcharts折线图、柱形图、饼状图-模拟后台传參源代码

    js代码: <script type="text/javascript"> $(function(){ showLine(); showColumn(); showPi ...

  3. js创建下载文件

    function downloadFile(fileName, content){ var aLink = document.createElement('a'); var blob = new Bl ...

  4. 完美去除WPF按钮的边框

    主页面背影图片, 添加5个功能按钮,并设置按钮的Background和BorderBrush为Transparent,好像没有问题,运行效果 不仅有一个发光的边框,而且当鼠标经过时,按钮就不在透明, ...

  5. POJ 36666 Making the Grade 简单DP

    题意是: 给出n个数,让你用最小的花费将其改成非递增或非递减的 然后花费就是新序列与原序列各个位置的数的差的绝对值的和 然后可以看到有2000个数,数的范围是10亿 仔细观察可以想象到.其实改变序列中 ...

  6. [IOS]本地化

    我们在IOS开发应用中,会碰到做好的一个应用,如何趋向国际化,也就是说支持多种语言?下面我就来简单演示一下,用一个Demo来实现中文和英文的实现. 实现步骤: 1.本地化项目中xib的view 1.在 ...

  7. Spring与Hibernate整合中,使用OpenSessionInViewFilter后出现sessionFactory未注入问题

    近期在知乎看到一句话,保持学习的有一种是你看到了很多其它的牛人,不甘心,真的不甘心. Spring和hibernate整合的时候,jsp页面做展现,发现展现属性出现: org.apache.jaspe ...

  8. Oracle 阅读器-刚看完表空间回复的详细解释

    (一) 当使用一个控制文件的备份恢复,例如下面的附图.使用备份控制文件恢复位置 watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvZGVtb25zb24=/fo ...

  9. 做web项目时对代码修改后浏览器端不生效的应对方法(持续更新)

    做web项目时,经常会遇到修改了代码,但浏览器端没有生效,原因是多种多样的,我会根据我遇到的情况逐步更新解决办法 1.运行的时候采用debug模式,一般情况下使用项目部署按钮右边那个按钮下的tomca ...

  10. error C2248: “CObject::operator =”: 不可访问 private 员(于“CObject”类声明)

    MFC如果编码错误: 演出:error C2248: "CObject::operator =": 不可访问 private 员(于"CObject"类声明) ...