战争

【问题描述】

在2240年,一场巨大的战争在地球联合力量(EAF)与火星联盟(MF)之间展开。至今,双方势均力敌。因最近的一次经济危机,资源紧缺,EAF将被MF勒要更多领土。为此,EAF决定采取战争以来最重要的行动:发动对分散在MF上各处的基地进行同时攻击。EAF的力量大都是mechs——大型两足跛行车,有飞行功能。

典型的MF基地概况如下:构成基地的房屋地跨一到两块领土。每块领土被保护塔产生的穿不透的能量层所笼罩,以免于外来袭击。这些保护塔围绕在领土周围起保护作用。

每座保护塔通过建造在地面上的水道与至少一座塔相联系。当那些相联系的塔围成一圈,它们产生能量层。否则能量层消失。

MF知道如果能量层消失,基地将很容易被EAF的力量侵占,因此,被水道相连的两座塔保护水道免受军事袭击。每座塔有防御功能,能拆卸指定数量的mechs,每个水道在坍塌之前能解决特定数量敌方mechs的袭击。这个数量由水道连接的两塔能拆卸的总数量决定。两座塔不能被一个以上的水道相连。

但是,袭击塔一边的水道不减少塔在另一边能拆卸的mechs的数量。因为这次行动是突袭,所有的对水道的袭击都必须同时,所有水道同时坍塌瓦解。

所有能量层必须废除才算毁灭了一个MF基地。破坏所有水道能达此目的,但也将需要很多mechs 牺牲。EAF只有很少的力量花费了,必须最有效率地部署mechs。

你被赋予这任务,写程序:使EAF胜利。给定一幅保护塔的曲线图,决定哪些水道要被破坏,来使所有能量层消失,要求战斗中牺牲最少的mechs。

【输入格式】

第一行为一个整数m,2 < m <= 100,代表塔的数量。

以下2m行,对于每个塔都有两行输入:

◎一行包含三个正整数i(0 <= i <= m-1),ui(1 <= ui <= 50),ci(1 <= ci <= m-1):每个塔的身份标识、可以摧毁的mechs的数量和与它相连的河道的数量。两个整数间用一个空格隔开。

◎一行包含ci个不同的正整数,代表和塔i连接的塔。一个塔不能连接到它自己,两个整数间用一个空格隔开。

该防御体系至少能够生成一个能量层。 不一定所有的塔连通。

【输出格式】

一行一个整数,代表EAF摧毁所有能量层所需要消耗的最少数量的mechs。

【输入样例】

3

0 1 2

1 2

1 2 2

0 2

2 3 2

0 1

【输出样例】

3

#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
int c,m,l,fa[];
int a[],b[],d[],z[];
long tot=,total=;
int find(int x){
if (fa[x]==x) return x; else return fa[x]=find(fa[x]);
}
void sort(int l,int r){
int i=l,j=r,mid=d[(l+r)/];
while (i<=j){
while (d[i]>mid) i++;
while (d[j]<mid) j--;
if (i<=j){
swap(a[i],a[j]);
swap(b[i],b[j]);
swap(d[i],d[j]);
i++;j--;
}}
if (i<r)sort(i,r);
if (l<j)sort(l,j);
}
void add(int x,int y,int z){
a[++tot]=x;
b[tot]=z;
d[tot]=y;
}
int main(){
int i,j,s,t,n,x,y; freopen("warfare.in","r",stdin);
freopen("warfare.out","w",stdout); scanf("%d",&n);
for (i=;i<n;i++){
scanf("%d%d%d",&m,&l,&c);
for (j=;j<c;j++){
scanf("%d",&s);
add(m,l,s);
total=total+l;
}
z[m]=l;
}
for (i=;i<=tot;i++) fa[i]=i;
sort(,tot); for (i=;i<=tot;i++){
x=find(a[i]);
y=find(b[i]);
if (x!=y){
fa[x]=y;
total=total-(z[a[i]]+z[b[i]]);
}
}
printf("%d",total);
return ;
}

代码

首先先说一下这一题,这是一题很裸的最大生成树,应该算是在初学时还不错的一题吧,依旧是根据最大生成树的原理很容易YY的

感觉打这题不太好打的地方,其实也是在我学最大生成树时最不理解的地方,应该是什么时候开始加边,什么时候不加边

这个问题应该是让我想了很久,之后再学习并查集的原理之后,打了一题并查集的裸题才有所体会(这一点也让我倍感在学习新的知识的时候,刷裸题的重要性啊),貌似是在看到并查集的第二个步骤:合并,的时候有种很像是明白也什么的样子

之后就意识到,条件就是判断是否已构成一棵树,讲的很白一点就是,判断某条边的两个端点是否有同一个祖先,如果没有,那么就合并,并用总的边权值减去该边(当然这是因题来说)

再啰嗦一下吧,自己还是很不注意循环的起始0.,唔。。这个不好的习惯要改嗯,其实这里也可以用sort,定义一个数组就可以实现= =自己懒得改了,下次有机会再用吧

这题对我来说还是蛮有意义的,是本蒟蒻学习图论的一个好的开始嗯,之前没有学的东西也是时候该认真学~\(≧▽≦)/~啦啦啦.....打算月考完,继续学习图论,把最短路问题学完,再把队列部分过一遍,之后还是继续刷长乐的题,复习复习算法,碰到新的东西趁机学一学嗯

= =还是没忍住等到月考之后再发题解orz....祝第一次月考顺利

warfare(最大生成树裸题)的更多相关文章

  1. 【填坑】bzoj3224 splay裸题

    人生第一道splay不出所料是一道裸题,一道水题,一道2k代码都不到的题 #include <cstdio> ,n,p,q; ],c[][],size[],sp[]; void rot(i ...

  2. tarjan讲解(用codevs1332(tarjan的裸题)讲解)

    主要借助这道比较裸的题来讲一下tarjan这种算法 tarjan是一种求解有向图强连通分量的线性时间的算法.(用dfs来实现) 如果两个顶点可以相互通达,则称两个顶点强连通.如果有向图G的每两个顶点都 ...

  3. LCT裸题泛做

    ①洞穴勘测 bzoj2049 题意:由若干个操作,每次加入/删除两点间的一条边,询问某两点是否连通.保证任意时刻图都是一个森林.(两点之间至多只有一条路径) 这就是个link+cut+find roo ...

  4. 贴一下WC总结里提到的那道裸题吧。。。

    [bzoj4034][HAOI2015]T2 试题描述 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 x 的点权增加 a . 操作 2 ...

  5. HDU 1102 最小生成树裸题,kruskal,prim

    1.HDU  1102  Constructing Roads    最小生成树 2.总结: 题意:修路,裸题 (1)kruskal //kruskal #include<iostream> ...

  6. hdu Flow Problem (最大流 裸题)

    最大流裸题,贴下模版 view code#include <iostream> #include <cstdio> #include <cstring> #incl ...

  7. POJ 3468 线段树裸题

    这些天一直在看线段树,因为临近期末,所以看得断断续续,弄得有些知识点没能理解得很透切,但我也知道不能钻牛角尖,所以配合着刷题来加深理解. 然后,这是线段树裸题,而且是最简单的区间增加与查询,我参考了A ...

  8. POJ 2195 Going Home 最小费用流 裸题

    给出一个n*m的图,其中m是人,H是房子,.是空地,满足人的个数等于房子数. 现在让每个人都选择一个房子住,每个人只能住一间,每一间只能住一个人. 每个人可以向4个方向移动,每移动一步需要1$,问所有 ...

  9. lightoj 1094 Farthest Nodes in a Tree 【树的直径 裸题】

    1094 - Farthest Nodes in a Tree PDF (English) Statistics Forum Time Limit: 2 second(s) Memory Limit: ...

随机推荐

  1. android layout物业介绍

    android:id 为控件指定对应的ID android:text 指定控件其中显示的文字,须要注意的是,这里尽量使用strings.xml文件其中的字符串 android:gravity 指定Vi ...

  2. vi/vim编辑器的基本操作

    vi/vim编辑器的基本操作 Contents 1. 工具准备(下载gvim) 2. vi/vim基本入门 2.1. 安装 2.2. 基本使用 3. vi/vim基本命令表 1 工具准备(下载gvim ...

  3. MySQL 服务器变量 数据操作DML-视图

    原文:MySQL 服务器变量 数据操作DML-视图 SQL语言的组成部分 常见分类: DDL:数据定义语言 DCL:数据控制语言,如授权 DML:数据操作语言 其它分类: 完整性定义语言: DDL的一 ...

  4. HDU 1686 Oulipo(kmp)

    Problem Description The French author Georges Perec (1936–1982) once wrote a book, La disparition, w ...

  5. 开源搜索引擎Iveely 0.8.0

    开源搜索引擎Iveely 0.8.0 这是一篇博客,不是,这是一篇开源人的心酸和喜悦,没有人可以理解我们的心情,一路的辛酸一路的艰辛,不过还好,在大家的支持下,总算是终见天日,谢谢那些给予我们无私帮助 ...

  6. Advance Installer安装问题

    一,在Advance Installer中注冊dll 1,首先将文件加入到Files And Folders中.此处以InstallValidate.dll为例. 2,在Custom Action处进 ...

  7. cocos2dx 3.0正式版 于mac在新建项目

    下载cocos2dx 3.0正式版,和安装python2.7.*版本号. 加入cocos命令: mac下: 在cocos2d-x\tools\cocos2d-console\bin文件夹下.执行ins ...

  8. Linux下一个C基本的编程----写进Blog在那之前

    展望2周的实习吧. 各种酸甜苦辣.由于公司只是广告.毛承保让我去.严重的歧视.想也想开,争夺.结果让它成为.还是把它写自己的学习经验,我有同样的希望和迷茫的同学.少走一点弯路.行.切入正题: 一.參考 ...

  9. c# 字符串切割 split

    一直以来  都以为 string.split 里面 就只能是 一个 char 实际不是 那么回事 参数 可以是 string. eg: string strtest = "asdfg12we ...

  10. Linux MySQL自己环境搭建的笔记

    cd /usr/share/selinuxsetenforce 0tar -xvf MySQL-5.6.12-1.el6.x86_64.rpm-bundle.tarrpm -qa|grep -i my ...