POJ2031Building a Space Station (最小生成树之prim)
The space station is made up with a number of units, called cells. All cells are sphere-shaped, but their sizes are not necessarily uniform. Each cell is fixed at its predetermined position shortly after the station is successfully put into its orbit. It is quite strange that two cells may be touching each other, or even may be overlapping. In an extreme case, a cell may be totally enclosing another one. I do not know how such arrangements are possible.
All the cells must be connected, since crew members should be able to walk from any cell to any other cell. They can walk from a cell A to another cell B, if, (1) A and B are touching each other or overlapping, (2) A and B are connected by a `corridor', or (3) there is a cell C such that walking from A to C, and also from B to C are both possible. Note that the condition (3) should be interpreted transitively.
You are expected to design a configuration, namely, which pairs of cells are to be connected with corridors. There is some freedom in the corridor configuration. For example, if there are three cells A, B and C, not touching nor overlapping each other, at least three plans are possible in order to connect all three cells. The first is to build corridors A-B and A-C, the second B-C and B-A, the third C-A and C-B. The cost of building a corridor is proportional to its length. Therefore, you should choose a plan with the shortest total length of the corridors.
You can ignore the width of a corridor. A corridor is built between points on two cells' surfaces. It can be made arbitrarily long, but of course the shortest one is chosen. Even if two corridors A-B and C-D intersect in space, they are not considered to form a connection path between (for example) A and C. In other words, you may consider that two corridors never intersect.
n
x1 y1 z1 r1
x2 y2 z2 r2
...
xn yn zn rn
The first line of a data set contains an integer n, which is the number of cells. n is positive, and does not exceed 100.
The following n lines are descriptions of cells. Four values in a line are x-, y- and z-coordinates of the center, and radius (called r in the rest of the problem) of the sphere, in this order. Each value is given by a decimal fraction, with 3 digits after the decimal point. Values are separated by a space character.
Each of x, y, z and r is positive and is less than 100.0.
The end of the input is indicated by a line containing a zero.
Note that if no corridors are necessary, that is, if all the cells are connected without corridors, the shortest total length of the corridors is 0.000.
10.000 10.000 50.000 10.000
40.000 10.000 50.000 10.000
40.000 40.000 50.000 10.000
2
30.000 30.000 30.000 20.000
40.000 40.000 40.000 20.000
5
5.729 15.143 3.996 25.837
6.013 14.372 4.818 10.671
80.115 63.292 84.477 15.120
64.095 80.924 70.029 14.881
39.472 85.116 71.369 5.553
0
0.000
73.834
#include<stdio.h>
#include<math.h>
typedef struct nn
{
double x,y,z,r,dist;
}NODE;
NODE node[105];
double map[105][105],INF=10000000.0;
int n,s[105];
void first()
{
for(int i=1;i<=n;i++)
{
s[i]=0; node[i].dist=INF;
for(int j=i+1;j<=n;j++)
map[i][j]=map[j][i]=INF;
}
}
void count_dist(NODE a,NODE b,int i,int j)
{
double d;
d=sqrt(pow(a.x-b.x,2)+pow(a.y-b.y,2)+pow(a.z-b.z,2));
if(d>a.r+b.r)
map[i][j]=map[j][i]=d-a.r-b.r;
else
map[j][i]=map[i][j]=0;
}
void count()
{
for(int i=1;i<=n;i++)
for(int j=i+1;j<=n;j++)
count_dist(node[i],node[j],i,j);
}
double Prim(int m)
{
int tm=m,k=1;
double min,sum;
s[m]=1;sum=0;
for(int i=2;i<=n;i++)
{
min=INF;
for(int j=1;j<=n;j++)
if(s[j]==0)
{
if(node[j].dist>map[tm][j])
node[j].dist=map[tm][j];
if(min>node[j].dist)
{
min=node[j].dist; m=j;
}
}
if(s[m]==0)
{
k++;s[m]=1; sum+=min;tm=m;
}
}
if(k==n)
return sum;
return 0.0;
}
int main()
{
while(scanf("%d",&n)>0&&n)
{
for(int i=1;i<=n;i++)
scanf("%lf%lf%lf%lf",&node[i].x,&node[i].y,&node[i].z,&node[i].r);
first();
count();
printf("%.3f\n",Prim(1));
}
}
POJ2031Building a Space Station (最小生成树之prim)的更多相关文章
- poj2031-Building a Space Station(最小生成树,kruskal,prime)
Building a Space Station Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 5874 Accepte ...
- POJ 2031:Building a Space Station 最小生成树
Building a Space Station Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 6083 Accepte ...
- POJ Building a Space Station 最小生成树
Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 15664 Accepted: 6865 Description You ...
- POJ - 2031C - Building a Space Station最小生成树
You are a member of the space station engineering team, and are assigned a task in the construction ...
- POJ 2031 Building a Space Station (最小生成树)
Building a Space Station Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 5173 Accepte ...
- poj--2031--Building a Space Station(prime)
Building a Space Station Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 6635 Accepte ...
- POJ2031Building a Space Station
http://poj.org/problem?id=2031 题意:你是空间站的一员,太空里有很多球形且体积不一的“小房间”,房间可能相距不近,也可能是接触或者甚至是重叠关系,所有的房间都必须相连,这 ...
- POJ 2031 Building a Space Station 最小生成树模板
题目大意:在三维坐标中给出n个细胞的x,y,z坐标和半径r.如果两个点相交或相切则不用修路,否则修一条路连接两个细胞的表面,求最小生成树. 题目思路:最小生成树树模板过了,没啥说的 #include& ...
- Building a Space Station POJ 2031 【最小生成树 prim】
http://poj.org/problem?id=2031 Description You are a member of the space station engineering team, a ...
随机推荐
- OGG同构(ORACLE-ORACLE)、异构(ORACLE-MYSQL)同步配置及错误解析
环境:11.2.0.3(已安装数据库实例)+OEL5.7 192.168.1.55 zlm sid:zlm11g 192.168.1.60 zlm2 sid:zlm11g 一.安装软件,配置环境,创建 ...
- 一起学习CMake – 02
本节介绍如何用CMake来设置软件的版本号 在<一起学习CMake - 01>中我们看到了如何用CMakeLists.txt来构建一个最简单的工程,这一节里我们一起来看看如何用CMake对 ...
- UVA1452|LA4727-----Jump------经典的约瑟夫公式的变形(DP)
本文出自:http://blog.csdn.net/dr5459 题目地址: http://uva.onlinejudge.org/index.php?option=com_onlinejudge&a ...
- Flash键盘钢琴谱
http://hi.baidu.com/%CC%EC%CA%B9%D2%FE%D2%ED/blog/item/e763d4eac3dcfb242cf53468.html <童话>Flash ...
- SICP练习1.6-1.8
1.6 死循环 1.7 #lang racket (define (square x) (* x x)) (define (sqrt-iter guess x) (if (good-enough? g ...
- 合并k个已排序的链表 分类: leetcode 算法 2015-07-09 17:43 3人阅读 评论(0) 收藏
最先想到的是把两个linked lists 合并成一个. 这样从第一个开始一个一个吞并,直到所有list都被合并. class ListNode:# Definition for singly-lin ...
- BZOJ 1537: [POI2005]Aut- The Bus(dp + BIT)
对y坐标离散化, 然后按x坐标排序, dp. 一个点(x, y), 设到达这个点接到的最多乘客数为t, 那么t可以用来更新y'>=y的所有点.用树状数组维护最大值. -------------- ...
- 如何搭建Visual Studio的内核编程开发环境
最近正在看<寒江独钓——Windows内核安全编程>这本书,感觉这本书非常好,有兴趣的朋友可以买来看看,有关这本书的信息请参考:http://www.china-pub.com/19559 ...
- 9天快速入门java
Java入门教程[9天快速入门JAVA] §1.3.简单的Java程序 下面我们先介绍两个简单的Java程序,并对其进行分析. 例1.1. public class HelloWorldApp{//a ...
- EasyUi 中datagrid 实现查询方法
1.在初始化表格方法中添加传入參数,例如以下: //初始化表格 function initTable(<strong><span style="color:#ff6666; ...