POJ2031Building a Space Station (最小生成树之prim)
The space station is made up with a number of units, called cells. All cells are sphere-shaped, but their sizes are not necessarily uniform. Each cell is fixed at its predetermined position shortly after the station is successfully put into its orbit. It is quite strange that two cells may be touching each other, or even may be overlapping. In an extreme case, a cell may be totally enclosing another one. I do not know how such arrangements are possible.
All the cells must be connected, since crew members should be able to walk from any cell to any other cell. They can walk from a cell A to another cell B, if, (1) A and B are touching each other or overlapping, (2) A and B are connected by a `corridor', or (3) there is a cell C such that walking from A to C, and also from B to C are both possible. Note that the condition (3) should be interpreted transitively.
You are expected to design a configuration, namely, which pairs of cells are to be connected with corridors. There is some freedom in the corridor configuration. For example, if there are three cells A, B and C, not touching nor overlapping each other, at least three plans are possible in order to connect all three cells. The first is to build corridors A-B and A-C, the second B-C and B-A, the third C-A and C-B. The cost of building a corridor is proportional to its length. Therefore, you should choose a plan with the shortest total length of the corridors.
You can ignore the width of a corridor. A corridor is built between points on two cells' surfaces. It can be made arbitrarily long, but of course the shortest one is chosen. Even if two corridors A-B and C-D intersect in space, they are not considered to form a connection path between (for example) A and C. In other words, you may consider that two corridors never intersect.
n
x1 y1 z1 r1
x2 y2 z2 r2
...
xn yn zn rn
The first line of a data set contains an integer n, which is the number of cells. n is positive, and does not exceed 100.
The following n lines are descriptions of cells. Four values in a line are x-, y- and z-coordinates of the center, and radius (called r in the rest of the problem) of the sphere, in this order. Each value is given by a decimal fraction, with 3 digits after the decimal point. Values are separated by a space character.
Each of x, y, z and r is positive and is less than 100.0.
The end of the input is indicated by a line containing a zero.
Note that if no corridors are necessary, that is, if all the cells are connected without corridors, the shortest total length of the corridors is 0.000.
10.000 10.000 50.000 10.000
40.000 10.000 50.000 10.000
40.000 40.000 50.000 10.000
2
30.000 30.000 30.000 20.000
40.000 40.000 40.000 20.000
5
5.729 15.143 3.996 25.837
6.013 14.372 4.818 10.671
80.115 63.292 84.477 15.120
64.095 80.924 70.029 14.881
39.472 85.116 71.369 5.553
0
0.000
73.834
#include<stdio.h>
#include<math.h>
typedef struct nn
{
double x,y,z,r,dist;
}NODE;
NODE node[105];
double map[105][105],INF=10000000.0;
int n,s[105];
void first()
{
for(int i=1;i<=n;i++)
{
s[i]=0; node[i].dist=INF;
for(int j=i+1;j<=n;j++)
map[i][j]=map[j][i]=INF;
}
}
void count_dist(NODE a,NODE b,int i,int j)
{
double d;
d=sqrt(pow(a.x-b.x,2)+pow(a.y-b.y,2)+pow(a.z-b.z,2));
if(d>a.r+b.r)
map[i][j]=map[j][i]=d-a.r-b.r;
else
map[j][i]=map[i][j]=0;
}
void count()
{
for(int i=1;i<=n;i++)
for(int j=i+1;j<=n;j++)
count_dist(node[i],node[j],i,j);
}
double Prim(int m)
{
int tm=m,k=1;
double min,sum;
s[m]=1;sum=0;
for(int i=2;i<=n;i++)
{
min=INF;
for(int j=1;j<=n;j++)
if(s[j]==0)
{
if(node[j].dist>map[tm][j])
node[j].dist=map[tm][j];
if(min>node[j].dist)
{
min=node[j].dist; m=j;
}
}
if(s[m]==0)
{
k++;s[m]=1; sum+=min;tm=m;
}
}
if(k==n)
return sum;
return 0.0;
}
int main()
{
while(scanf("%d",&n)>0&&n)
{
for(int i=1;i<=n;i++)
scanf("%lf%lf%lf%lf",&node[i].x,&node[i].y,&node[i].z,&node[i].r);
first();
count();
printf("%.3f\n",Prim(1));
}
}
POJ2031Building a Space Station (最小生成树之prim)的更多相关文章
- poj2031-Building a Space Station(最小生成树,kruskal,prime)
Building a Space Station Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 5874 Accepte ...
- POJ 2031:Building a Space Station 最小生成树
Building a Space Station Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 6083 Accepte ...
- POJ Building a Space Station 最小生成树
Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 15664 Accepted: 6865 Description You ...
- POJ - 2031C - Building a Space Station最小生成树
You are a member of the space station engineering team, and are assigned a task in the construction ...
- POJ 2031 Building a Space Station (最小生成树)
Building a Space Station Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 5173 Accepte ...
- poj--2031--Building a Space Station(prime)
Building a Space Station Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 6635 Accepte ...
- POJ2031Building a Space Station
http://poj.org/problem?id=2031 题意:你是空间站的一员,太空里有很多球形且体积不一的“小房间”,房间可能相距不近,也可能是接触或者甚至是重叠关系,所有的房间都必须相连,这 ...
- POJ 2031 Building a Space Station 最小生成树模板
题目大意:在三维坐标中给出n个细胞的x,y,z坐标和半径r.如果两个点相交或相切则不用修路,否则修一条路连接两个细胞的表面,求最小生成树. 题目思路:最小生成树树模板过了,没啥说的 #include& ...
- Building a Space Station POJ 2031 【最小生成树 prim】
http://poj.org/problem?id=2031 Description You are a member of the space station engineering team, a ...
随机推荐
- bresenham算法的FPGA的实现2
在上一篇里http://www.cnblogs.com/sepeng/p/4045593.html <bresenham算法的FPGA的实现1>已经做了一个整体框架的布局,但是那个程序只是 ...
- 不直接访问远程的数据库,而是通过中间件(专业DBA的博客)
建议不直接访问远程的数据库,而是通过中间件. 或者找到好的加密方式.http://blog.csdn.net/sqlserverdiscovery/article/details/8068318 在S ...
- Python 2.7 学习笔记 条件与循环语句
本文介绍下python条件和循环语句的语法 一.if条件语句 语法格式如下: if 表达式: .... elif 表达式: .... elif 表达式: .... else: ..... 说明:与其它 ...
- maven仓库--私服(Nexus的配置使用)
maven--私服的搭建(Nexus的使用)和注意的问题 私服是什么 私服,私有服务器,是公司内部Maven项目经常需要的东东,不总结一下,不足以体现出重视.Nexus是常用的私用Maven服务器,一 ...
- java代码中获取进程process id(转)
另一方面,线程ID=进程ID+内部线程对象ID并不成立, 参考: blog.csdn.net/heyetina/article/details/6633901 如何在java代码中获取进 ...
- 基于visual Studio2013解决算法导论之028散列表开放寻址
题目 散列表 解决代码及点评 #include <iostream> #include <time.h> using namespace std; template & ...
- Android --Vibrator--震动服务
1.取得震动服务的句柄 vibrator = (Vibrator) getSystemService(VIBRATOR_SERVICE);或者vibrator = (Vibrator)getAppli ...
- 变相的取消Datagridview控件的选中状态
思路:把每一列的文字颜色设为黑色,选中时候的背景为白色,颜色为黑色.每一列都这样设置,那么变相的达到了取消选中效果. 图:
- 04-IOSCore - User Defaults、Archive、存储总结
一. User Defaults 1. 是什么? 是一个特殊的plist文件 2. 干什么? 用于保存应用的配置信息 3. 存什么信息? 信息:欢迎界面有没有被打开过 目的:欢迎界面只显示一次 信息: ...
- Jquery学习笔记:删除节点的操作
假设如下的html代码 <div id="mydiv" style="width:100px;height:100px;border:1px solid red&q ...