[USACO09NOV]硬币的游戏 博弈 dp
LINK : coin game
这道题 超级经典去年这个时候我就看过题目了 但时至今日还不会/cy 觉得在做比赛的题目的时候少写省选的题目 多做水题多做不难也不简单的题目就好了。
由于我是真的不会博弈上dp(其实我博弈都不太会...故写这道题的时候没有过多的思考只是草草想了一波状态就直接看题解了发现状态都列错了。
当我 理解题解中的做法感觉还不是特别的自然故写一篇题解来印证自己的理解。
这里我写上最初始的思路吧 题目中想让我们两个玩家都选择最优的情况下 第一个玩家最多能获得多少的钱。看起来是一个博弈但是题目中有限制条件前一个玩家取了j个硬币的话后一个玩家最多取2*j个硬币。
那如何进行这个过程的呢 我们很难去博弈吧因为没有必胜点和必败点这个东西 不论胜败且每次决策紧扣下一次的决策 搜索复杂度超级高。
开始我也不知道应该选什么取得最优 如果我知道后续的状态 我们从起手的状态转移到最优后续的状态就好了 可是我们并不知道后续的状态?考虑先把后面的东西求出来转移到前面的比较好。
因为结束之后的状态我们是知道的选完了最后的状态显然是0 就从这个状态转移好了那么就有了状态 f[i]表示剩下i个硬币此时选择的最优状态首先解决的一个问题是由于两个人 都是选取最优的方法 故状态转移显然是一样的我们只要每次转移的时候从对方最优状态之中选择一个对自己最优的状态就好了 故转移到f[n] 由于第一个玩家先选 f[n] 就是我们的答案了 f[i]=max{sum[i]-f[k];}有了这个状态 相信此时对于两个人拥有同一个状态没有什么疑问了吧两个人都是选取最优的方法显然其实对方也是f数组的含义这样就计算好了f当前这个人如果选的话的最优解 显然我们还需要知道选择了多少个方便转移 那么状态空间到此就非常的完善了 f[i][j]表示剩下i个硬币上一次选了j个硬币的最优解 那么显然了状态转移 f[i][j]=max{sum[i]-f[i-k][k]} 其中k属于 1~2*j 然后 答案自然就是f[n][1]了。
非常的自然 不是么 我觉得难度还是有的 这值得我慢慢的推敲... 相信状态是我唯一的选择的。
//#include<bits/stdc++.h>
#include<iostream>
#include<cmath>
#include<ctime>
#include<algorithm>
#include<cctype>
#include<utility>
#include<queue>
#include<map>
#include<set>
#include<bitset>
#include<deque>
#include<vector>
#include<cstdio>
#include<cstdlib>
#include<iomanip>
#include<stack>
#include<string>
#include<cstring>
#define INF 2000000000
#define ll long long
#define db double
#define max(x,y) ((x)>(y)?(x):(y))
#define min(x,y) ((x)>(y)?(y):(x))
#define mp(x,y) make_pair(x,y)
using namespace std;
char buf[<<],*fs,*ft;
inline char getc()
{
return (fs==ft&&(ft=(fs=buf)+fread(buf,,<<,stdin),fs==ft))?:*fs++;
}
inline int read()
{
int x=,f=;char ch=getc();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getc();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getc();}
return x*f;
}
const int MAXN=;
int n;
int a[MAXN],sum[MAXN];
int f[MAXN][MAXN];//f[i][j]表示 现在剩下1~i枚金币且上次取了j次当前第一个玩家能取到的最多钱数
int main()
{
//freopen("1.in","r",stdin);
n=read();
for(int i=n;i>=;--i)a[i]=read();
for(int i=;i<=n;++i)sum[i]=sum[i-]+a[i];
for(int i=;i<=n;++i)
for(int j=;j<=n;++j)
{
f[i][j]=f[i][j-];
int w=(j<<)-;
if(w<=i)f[i][j]=max(f[i][j],sum[i]-f[i-w][w]);
++w;if(w<=i)f[i][j]=max(f[i][j],sum[i]-f[i-w][w]);
}
printf("%d\n",f[n][]);
return ;
}
[USACO09NOV]硬币的游戏 博弈 dp的更多相关文章
- tyvj P1075 - 硬币游戏 博弈DP
P1075 - 硬币游戏 From price Normal (OI)总时限:10s 内存限制:128MB 代码长度限制:64KB 背景 Background 农民John的牛喜欢玩 ...
- [luogu2964][USACO09NOV][硬币的游戏A Coin Game] (博弈+动态规划)
题目描述 Farmer John's cows like to play coin games so FJ has invented with a new two-player coin game c ...
- P2964 [USACO09NOV]硬币的游戏A Coin Game (DP)
题意:n颗硬币 两个人从前往后按顺序拿 如果上一个人拿了i颗 那么下一个可以拿1-2*i颗 问先手能获得的最大收益 题解:比较典型的最大最小最大最小..DP了 但是暴力做的话是n^3 所以就体现出了这 ...
- 洛谷P2964 [USACO09NOV]硬币的游戏A Coin Game
题目描述 Farmer John's cows like to play coin games so FJ has invented with a new two-player coin game c ...
- 计蒜客 取数游戏 博弈+dp
题目链接 取数游戏 思路:dp(x, y)表示先手在区间[x, y]能取得的最大分数.当先手取完,就轮到后手去,后手一定会选择当前能令他得到最大分数的策略,其实当先手在[x, y]区间两端取走一个数, ...
- [USACO09NOV]硬币的游戏A Coin Game
https://daniu.luogu.org/problemnew/show/P2964 dp[i][j] 表示桌面上还剩i枚硬币时,上一次取走了j个的最大得分 枚举这一次要拿k个,转移到dp[i- ...
- LUOGU P2964 [USACO09NOV]硬币的游戏A Coin Game
题目描述 Farmer John's cows like to play coin games so FJ has invented with a new two-player coin game c ...
- 【P2964】硬币的游戏(DP+前缀和)
一道DP,思维难度真是不小. 首先对于这个题的数据,我们可以发现差不多可以支持n^2logn,但是貌似也不会有这种复杂度的线性DP(至少这个题看上去不是这样).所以我们考虑N^2做法.因为求得是价值和 ...
- [LUOGU2964] [USACO09NOV]硬币的游戏A Coin Game
题目描述 Farmer John's cows like to play coin games so FJ has invented with a new two-player coin game c ...
随机推荐
- css实现内容渐变隐藏效果,手机网页版知乎内容隐藏效果的实现
看到一个需求,如下图,知乎手机网页版的一个视觉效果,对内容很长的部分有一个渐变的隐藏的效果,个人觉得这个设计还是很好的,符合手机大小的应用场景,没有一下子显示完全,可以很快的滑倒页面底部,一定程度上减 ...
- Code Forces 833 A The Meaningless Game(思维,数学)
Code Forces 833 A The Meaningless Game 题目大意 有两个人玩游戏,每轮给出一个自然数k,赢得人乘k^2,输得人乘k,给出最后两个人的分数,问两个人能否达到这个分数 ...
- NOIP 2016 洛谷 P2827 蚯蚓 题解
题目传送门 展开 题目描述 本题中,我们将用符号[c]表示对c向下取整,例如:[3.0」= [3.1」=[3.9」=3.蛐蛐国最近蚯蚓成灾了!隔壁跳 蚤国的跳蚤也拿蚯蚓们没办法,蛐蛐国王只好去请神刀手 ...
- 切忌一步到位,谈谈DevOps实施落地
2020年6月19日,由云计算开源产业联盟指导,高效运维社区和 DevOps 时代社区联合举办的GNSEC 2020线上峰会圆满举办.BoCloud博云参加了本次峰会并分享了博云帮助客户实施DevOp ...
- 古有七步成诗,今有六步完成DevOps上华为云DevCloud实践
引言: 在“DevOps能力之屋(Capabilities House of DevOps)”中,华为云DevCloud提出(工程方法+最佳实践+生态)×工具平台=DevOps能力.华为云DevClo ...
- 题解:2018级算法第四次上机 C4-商人卖鱼
题目描述: 样例: 实现解释: 需要简单分析的贪心题 知识点: 贪心,自定义排序,提前存储 题目分析: 卖鱼,鱼卖出去需要时间,鱼没被卖出去之前需要吃饲料 则有,如果卖a鱼的话b鱼会吃饲料c份,而卖b ...
- JVM 专题十二:运行时数据区(七)对象的实例化内存布局与访问定位
1. 对象的实例化 1.1 创建对象的方式 new 最常见的方式 变形1 : Xxx的静态方法 变形2 : XxBuilder/XxoxFactory的静态方法 Class的newInstance() ...
- 数据可视化之powerBI基础(十七)掌握PowerBI按列排序,再也不用担心顺序错乱了
https://zhuanlan.zhihu.com/p/64421933 经常有朋友问,当把文本字段放到坐标轴或者切片器上,显示的顺序都乱了,完全不是自己想要的,就像下面这些, ↑月份坐标轴 ↑星期 ...
- Reface.AppStarter 类型扫描 —— 获得系统中所有的实体类型
类型扫描 是 Reface.AppStarter 提供的最基本.最核心的功能. AutoConfig , ComponentScan 等功能都是基于该功能完成的. 每一个使用 Reface.AppSt ...
- P4017 最大食物链计数 (拓扑排序)
看到拓扑排序感觉非常遥远的复杂,不喜欢图.看了拓扑排序的原理,很像广搜. 以本题样例为例: 了解一下 出度 和 入度 5的出度为3 入度为 0 ,3的出度为2 入度为2…… for循环 找到秃头 5 ...