从RNN到BERT
一、文本特征编码
1. 标量编码
美国:1 中国:2 印度:3 … 朝鲜:197
标量编码问题:美国 + 中国 = 3 = 印度
2. One-hot编码
美国:[1,0,0,0,…,0]
中国:[0,1,0,0,…,0]
印度:[0,0,1,0,…,0]
美国 + 中国 = [1,1,0,0,…,0],代表拥有美国和中国双重国籍
3. Embedding编码

二、文本序列化表示
1、Tokenization

2、Build Dictionary


3、One-hot encoding

4、Align Sequences

三、RNN模型

整个RNN只有一个参数矩阵A。RNN 在大规模的数据集上已经过时,不如Transformer模型,但在小规模数据集上,RNN还是很有用的。
3.1 RNN模型结构

3.2 为什么用双曲正切?是否可去掉?

3.3 RNN的模型参数
参数矩阵A的行: shape(h)
参数矩阵A的列: shape(h)+shape(x)
总参数数量: shape(h)× [shape(h)+shape(x)] (未考虑偏移量bias)
输入x 的维度(词嵌入向量)应该通过交叉验证的方式选择 输出状态向量h的维度也应该通过交叉验证的方式选择。
3.4 基于RNN的分类任务
可以使用多个状态向量进行下游任务:
3.4.1 只使用最后一个状态向量

- Training Accuracy: 89.2%
- Validation Accuracy: 84.3%
- Test Accuracy: 84.4%
3.4.2 使用所有状态向量

- Training Accuracy: 96.3%
- Validation Accuracy: 85.4%
- Test Accuracy: 84.7%
3.5 RNN的局限
RNN 在状态向量ht中积累xt及之前的所有信息,ht可以看作整个输入序列中抽取的特征向量
RNN 记忆比较短,会遗忘很久之前的输入x 。
四、LSTM模型
4.1 RNN与LSTM网络结构比较


4.2 LSTM传送带
过去的信息直接流向未来。 LSTM使用“传送带”C 来获得比RNN更长的记忆。

4.3 LSTM 门

4.4 Bi-LSTM

可以使用RNN或LSTM进行更为复杂的任务,例如机器翻译,下面会介绍机器翻译模型Seq2Seq。
五、Seq2Seq模型
Seq2Seq模型用来进行句子翻译,Seq2Seq包括Encoder编码器以及Decoder 解码器 两部分,最早的Seq2Seq模型由两个RNN模型组成,如下图所示。

Attention对Seq2Seq网络的提升十分明显,如下图所示(BLEU:机器翻译评价指标,“双语评估替补”)

5.1 基于Attention的Seq2Seq模型

5.2 基于Attention的Seq2Seq模型参数计算

5.3 Attention的可解释性
无论输入多长,Attention都可以获得所有输入信息,且由于计算每个输出与所有输入的状态向量的相关性,所以会对相关的输入产生较高相关性,也就具备了一定的可解释性

六、Attention模型
6.1 基于RNN的Self-Attention
Attention可以用来做句子翻译。 而Self-Attention可以用来代替RNN。 Self-Attention是Attention的特殊形式。Self-Attention模型其实就是在序列内部做Attention,寻找序列内部的联系。
例如输入一个句子,那么里面的每个词都要和该句子中的所有词进行attention计算。目的是学习句子内部的词依赖关系,捕获句子的内部结构。
Self-Attention和RNN最大的区别是不使用状态向量h,而是采用状态向量c 去更新下一个状态h。

6.2 基于RNN的Self-Attention参数计算

七、Transformer模型
- Transformer完全基于Self- Attention 和Attention Transformer 是一个 Seq2Seq 模型
- 不是 RNN
- 仅包含Self-Attention层 、Attention层 和全连接层
- Transformer完爆最好的RNN+Attention模型
7.1 Transformer中的Attention
Transformer中的Attention剔除了RNN,即没有循环部分。
Attention层接收两个输入序列,分别为输入序列:
从RNN到BERT的更多相关文章
- ASE: CODEnn Reproduce
Background 第二次结对编程的任务是挑选一个用自然语言搜索相关代码片段的模型实现,并且可以提出自己的想法改进.这个任务很cool,前期做了不少调研.使用自然语言搜索相关代码片段现在是个很受关注 ...
- 从Word Embedding到Bert模型—自然语言处理中的预训练技术发展史(转载)
转载 https://zhuanlan.zhihu.com/p/49271699 首发于深度学习前沿笔记 写文章 从Word Embedding到Bert模型—自然语言处理中的预训练技术发展史 张 ...
- 深入理解BERT Transformer ,不仅仅是注意力机制
来源商业新知网,原标题:深入理解BERT Transformer ,不仅仅是注意力机制 BERT是google最近提出的一个自然语言处理模型,它在许多任务 检测上表现非常好. 如:问答.自然语言推断和 ...
- google tensorflow bert代码分析
参考网上博客阅读了bert的代码,记个笔记.代码是 bert_modeling.py 参考的博客地址: https://blog.csdn.net/weixin_39470744/article/de ...
- 【NLP】彻底搞懂BERT
# 好久没更新博客了,有时候随手在本上写写,或者Evernote上记记,零零散散的笔记带来零零散散的记忆o(╥﹏╥)o..还是整理到博客上比较有整体性,也方便查阅~ 自google在2018年10月底 ...
- 最强NLP模型-BERT
简介: BERT,全称Bidirectional Encoder Representations from Transformers,是一个预训练的语言模型,可以通过它得到文本表示,然后用于下游任务, ...
- Attention is all you need及其在TTS中的应用Close to Human Quality TTS with Transformer和BERT
论文地址:Attention is you need 序列编码 深度学习做NLP的方法,基本都是先将句子分词,然后每个词转化为对应的的词向量序列,每个句子都对应的是一个矩阵\(X=(x_1,x_2,. ...
- 基于Bert的文本情感分类
详细代码已上传到github: click me Abstract: Sentiment classification is the process of analyzing and reaso ...
- 想研究BERT模型?先看看这篇文章吧!
最近,笔者想研究BERT模型,然而发现想弄懂BERT模型,还得先了解Transformer. 本文尽量贴合Transformer的原论文,但考虑到要易于理解,所以并非逐句翻译,而是根据笔者的个人理解进 ...
随机推荐
- mysql 主键自增设置,插入数据就不必再设置了。
(完)
- Spring IoC 属性赋值阶段
前言 本系列全部基于 Spring 5.2.2.BUILD-SNAPSHOT 版本.因为 Spring 整个体系太过于庞大,所以只会进行关键部分的源码解析. 本篇文章主要介绍 Spring IoC 容 ...
- A Simple Problem,题解
题目: 分析: 看到式子,推一推其实就是(y+x)*(y-x)=n,显然可以根号n的枚举,判断一下合不合法直接出结果,然后就是代码.注意x!=0. #include <cstdio> #i ...
- Spring 5.2.x 源码环境搭建(Windows 系统环境下)
前期准备 1.确保本机已经安装好了 Git 2.Jdk 版本至少为 1.8 3.安装好 IntelliJ IDEA (其他开发工具,如 eclipse.Spring Tool Suite 等也是可以的 ...
- DNP3协议解析 —— 利用Wireshark对报文逐字节进行解析详细解析Modbus所含功能码
现在网上有很多类似的文章.其实这一篇也借鉴了很多其他博主的文章. 写这篇文章的重点是在于解析功能和报文.对Dnp3这个协议并不会做很多介绍. 那我们就开始吧 上图则为dnp3协议整体的报文模型(点击红 ...
- 表格(table)数据导出成Excel
使用xlxs-js库 function exportExcel () { var wb = XLSX.utils.table_to_book(document.querySelector('.my-e ...
- python 装饰器(五):装饰器实例(二)类装饰器(类装饰器装饰函数)
回到装饰器上的概念上来,装饰器要求接受一个callable对象,并返回一个callable对象(不太严谨,详见后文). 那么用类来实现也是也可以的.我们可以让类的构造函数__init__()接受一个函 ...
- 京东秋招提前批初试--java开发工程师
1,自我介绍,学过的课程有哪些 2,介绍一下java的内存结构和内存模型(jvm和jmm) 3,对于NIO有没有了解?作用是什么?(基于通道和缓冲区的I/O方式,用的是DirectByteBuffer ...
- 深度剖析分布式单点登录框架XXL-SSO
于2018年初,在github上创建XXL-SSO项目仓库并提交第一个commit,随之进行系统结构设计,UI选型,交互设计-- 于2018年初,在github上创建XXL-SSO项目仓库并提交第一个 ...
- Crystal Reports --报表设计
完整的报表解决方案 数据访问—>报表设计—>报表管理—>与应用系统集成 一.规划报表 设计报表的准备工作 谁看报表? 报表的数据是什么?(页眉页脚的内容?是否需要分组?是否需要汇总? ...