最近,口罩成为绝对热门的话题,在疫情之下,出门不戴口罩不仅对自己不负责,对他人而言也是一种潜在的威胁。所以许多小区都有保安在门口守着,谁要是不戴口罩就吼回去(吓死我了)。

很多人学习python,不知道从何学起。
很多人学习python,掌握了基本语法过后,不知道在哪里寻找案例上手。
很多已经做案例的人,却不知道如何去学习更加高深的知识。
那么针对这三类人,我给大家提供一个好的学习平台,免费领取视频教程,电子书籍,以及课程的源代码!
QQ群:1097524789

尽管如此,人工检测总有可能漏掉人,而且无时无刻地盯着,保安叔叔也特别累。今天我们就来尝试用计算机自动检测人脸是否佩戴口罩的可行性,如果可行,那么根据我们以前的推送: 人脸检测自动开机 ,就可以做一个实时摄像头,如果发现有人没戴口罩则发送警告给保安,以提高保安的工作效率。

很多人学习python,不知道从何学起。
很多人学习python,掌握了基本语法过后,不知道在哪里寻找案例上手。
很多已经做案例的人,却不知道如何去学习更加高深的知识。
那么针对这三类人,我给大家提供一个好的学习平台,免费领取视频教程,电子书籍,以及课程的源代码!
QQ群:1097524789

当然,想要识别人脸是否佩戴口罩,需要做很多训练数据的收集,不过最近百度开源了他们的人脸口罩识别模型: PaddleHub 口罩检测 。我们今天就来试试这个模型的效果。

1.准备

为了实现这个实验,Python是必不可少的,如果你还没有安装Python,建议阅读我们的这篇文章哦: 超详细Python安装指南 。

然后,我们需要安装百度的paddlepaddle, 进入他们的官方网站就有详细的指引:

www.paddlepaddle.org.cn/install/qui…

根据你自己的情况选择这些选项,最后一个CUDA版本,由于本实验不需要训练数据,也不需要太大的计算量,所以直接选择CPU版本即可。选择完毕,下方会出现安装指引,不得不说,Paddlepaddle这些方面做的还是比较贴心的(就是名字起的不好)。

要注意,如果你的Python3环境变量里的程序名称是Python,记得将语句改为Python xxx,如下进行安装:

python -m pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple
复制代码

还需要安装paddlehub:

pip install -i https://mirror.baidu.com/pypi/simple paddlehub
复制代码

2.编写代码

Paddlehub作为一个深度学习平台,用起来还是相当方便的,尤其是对于我这种(调包小王子)非研究型应用者。一共就只有四个步骤:

  • 1.引入模块和图片
  • 2.载入模型
  • 3.分类与预测
  • 4.结果展示

把我们需要测试的图片保存在该代码文件的同一目录下,命名为3.jpg:

想看这个小姐姐摘下口罩的样子

代码如下:

import paddlehub as hub
import matplotlib.pyplot as plt
import matplotlib.image as mpimg # 1.待预测图片
test_img_path = ["./3.jpg"] # 2.载入模型
module = hub.Module(name="pyramidbox_lite_mobile_mask") # 3.预测
input_dict = {"image": test_img_path}
results = module.face_detection(data=input_dict) # 4.结果展示
img = mpimg.imread("detection_result/3.jpg")
plt.figure(figsize=(10, 10))
plt.imshow(img)
plt.axis('off')
plt.show()
复制代码

没错,你没看错,就是这么简单。去掉空行和注释只有12行代码,再狠一点,把matplot展示部分全部去掉,只有6行代码。再再狠一点,把 test_img_path和input_path变量 以及 module.face_detection 语句合并,你会发现只有3行代码:

import paddlehub as hub
module = hub.Module(name="pyramidbox_lite_mobile_mask")
results = module.face_detection(data={"image": ["./3.jpg"]})
复制代码

执行完后的分类结果在同一目录下的 detection_result 目录下查看即可。所以说,说20行代码是谦虚,3行代码就够了。

3.结果展示

我们测试的那张图片,结果如下:

MASK:97.64% 代表这个人戴了口罩,可信度为97.64%。

NO MASK: 97.41% 代表这个人没戴口罩,可信度为97.41%

最后面那个大叔也是MASK,但是它的可信度只有54.31%,所以很可能是误判,在我们实际应用的时候,只需要把警告阈值(比如80%)提高,即可筛去这些不可信的分类。

不过,这个模型有一个缺点就是,对于远距离的人判断并不是很精确:

离镜头最近的这个人可能是因为侧脸的原因,脸部特征不明显识别不出来。但是远处的这些戴着口罩却被识别为没戴口罩的,就是这个模型的锅了。不过,通过阈值过滤和缩短摄像头摄影距离还是可以将这个模型用于实际生活中的。

我们的文章到此就结束啦,如果你希望我们今天的 Python 教程 ,请持续关注我们,如果对你有帮助,麻烦在下面点一个赞/在看哦,有任何问题都可以在下方留言区留言,我们都会耐心解答的!

20行Python代码检测人脸是否佩戴口罩的更多相关文章

  1. 用 20 行 python 代码实现人脸识别!

    点击上方"Python编程与实战",选择"置顶公众号" 第一时间获取 Python 技术干货! 阅读文本大概需要 11分钟. 今天给大家介绍一个世界上最简洁的人 ...

  2. 30行Python代码实现人脸检测

    参考OpenCV自带的例子,30行Python代码实现人脸检测,不得不说,Python这个语言的优势太明显了,几乎把所有复杂的细节都屏蔽了,虽然效率较差,不过在调用OpenCV的模块时,因为模块都是C ...

  3. 20行Python代码爬取王者荣耀全英雄皮肤

    引言王者荣耀大家都玩过吧,没玩过的也应该听说过,作为时下最火的手机MOBA游戏,咳咳,好像跑题了.我们今天的重点是爬取王者荣耀所有英雄的所有皮肤,而且仅仅使用20行Python代码即可完成. 准备工作 ...

  4. 25行 Python 代码实现人脸检测——OpenCV 技术教程

    这是篇是利用 OpenCV 进行人脸识别的技术讲解.阅读本文之前,这是注意事项: 建议先读一遍本文再跑代码——你需要理解这些代码是干什么的.成功跑一遍不是目的,能够举一反三.在新任务上找出 bug 才 ...

  5. [转]7行Python代码的人脸识别

    https://blog.csdn.net/wireless_com/article/details/64120516 随着去年alphago 的震撼表现,AI 再次成为科技公司的宠儿.AI涉及的领域 ...

  6. 25 行 Python 代码实现人脸识别——OpenCV 技术教程

    OpenCV OpenCV 是最流行的计算机视觉库,原本用 C 和 C++ 开发,现在也支持 Python. 它使用机器学习算法在图像中搜索人的面部.对于人脸这么复杂的东西,并没有一个简单的检测能对是 ...

  7. 7行Python代码的人脸识别

    随着去年alphago 的震撼表现,AI 再次成为科技公司的宠儿.AI涉及的领域众多,图像识别中的人脸识别是其中一个有趣的分支.百度的BFR,Face++的开放平台,汉王,讯飞等等都提供了人脸识别的A ...

  8. 10行Python代码实现人脸定位

    10行python机器学习全卷机网,实现100+张人脸同时定位! 发表评论 1,049 游览 A+ 所属分类:未分类 收  藏 今天介绍一个快速定位人脸的深度学习算法MTCNN,全称是:Multi-t ...

  9. 如何用20行Python代码打造一个微信群聊助手?

    今天要教大家一个黑科技,20行代码实现自己定制的微信群聊助手,可以用来活跃群气氛,好多群主创建完群后,拉完一群人,之后就一片寂静,有个群聊助手,就可以帮忙活跃群里气氛,通过今天在自己的微信上有一大批好 ...

随机推荐

  1. Scala 面向对象(五):面向对象的特征一:封装性

    1 封装介绍 封装(encapsulation)就是把抽象出的数据和对数据的操作封装在一起,数据被保护在内部,程序的其它部分只有通过被授权的操作(成员方法),才能对数据进行操作. 封装的理解和好处 隐 ...

  2. 数据可视化之powerBI基础(二)PowerBI动态图表技巧:钻取交互

    https://zhuanlan.zhihu.com/p/64406366 查看可视化图表的时候,我们可能想深入了解某个视觉对象的更详细信息,或者进行更细粒度的分析,比如看到2017年的总体数据,同时 ...

  3. python 装饰器(五):装饰器实例(二)类装饰器(类装饰器装饰函数)

    回到装饰器上的概念上来,装饰器要求接受一个callable对象,并返回一个callable对象(不太严谨,详见后文). 那么用类来实现也是也可以的.我们可以让类的构造函数__init__()接受一个函 ...

  4. .net core微服务——gRPC(下)

    序 上一篇博客把grpc的概念说了个大概,介绍了proto的数据类型,基本语法,也写了个小demo,是不是没那么难? 今天要从理论到实际,写两个微服务,并利用grpc完成两者之间的通信.只是作为dem ...

  5. 史上最强vue总结~万字长文---面试开发全靠它了

    vue框架篇 vue的优点 轻量级框架:只关注视图层,是一个构建数据的视图集合,大小只有几十kb: 简单易学:国人开发,中文文档,不存在语言障碍 ,易于理解和学习: 双向数据绑定:保留了angular ...

  6. var 的一个坑,以及 let

    选自 Typescript 中文教程. 快速的猜一下下面的代码会返回什么: for (var i = 0; i < 10; i++) { setTimeout(function() { cons ...

  7. MySQL数据库---数据库备份、视图、触发器、事物、存储过程、函数和索引

    备份 方法: 使用mysqldump实现逻辑备份 语法: mysqldump -h 服务器 -u用户名 -p密码 数据库名 > 备份文件.sql 单库备份: mysqldump -uroot - ...

  8. ElasticSearch(一)概念介绍及环境搭建

    一.什么是ElasticSearch: Elasticsearch (ES)是一个基于Lucene构建的开源.分布式.RESTful 接口全文搜索引擎.Elasticsearch 还是一个分布式文档数 ...

  9. ~~网络编程(四):socket套接字~~

    进击のpython ***** 网络编程--socket socket的中文意思叫做套接字,socket方法其实也叫套接字方法 我们研究过TCP/UDP协议,但是要是让我们自己搭建,就十分困难了 而这 ...

  10. 随机生成姓名&批量生成不重名

    # -*- coding: utf-8 -*- """ Created on Thu Jul 23 14:43:07 2020 @author: Administrato ...