数据分析02 /pandas基础
数据分析02 /pandas基础
1. pandas简介
numpy能够帮助我们处理的是数值型的数据,当然在数据分析中除了数值型的数据还有好多其他类型的数据(字符串,时间序列),那么pandas就可以帮我们很好的处理除了数值型的其他数据!
pandas中的两个常用的类:Series/DataFrame
2. Series
定义:
Series是一种类似一维数组的对象,由下面两个部分组成:
values:一组数据(ndarray类型)
index:相关的数据索引标签
Series的创建
1.由列表或numpy数组创建
2.由字典创建
代码示例:
import pandas as pd
from pandas import Series,DataFrame
import numpy as np # 方式一:
s1 = Series(data=[1,2,3,4,5]) # 方式二:
s2 = Series(data=np.random.randint(0,100,size=(4,))) # 方式三:
dic = {
'a':1,
'b':2,
'c':3
}
# Series的索引可以为字符串
s3 = Series(data=dic) # Series这个数据结构中存储的数据一定得是一个维度
Series的索引
1.隐式索引:数值型,默认是隐式索引
2.显式所用:自定义(字符串),提高数据的可读性
代码示例:
# index指定显式索引
s4 = Series(data=[1,2,3],index=['数学','英语','理综'])
Series的索引和切片
1.索引操作
# 隐式索引操作
s4[0]
# 显示索引操作
s4['数学']
s4.数学
2.切片
s4[0:2]
Series的常用属性
- shape:形状; 例:s4.shape
- size:大小; 例:s4.size
- index:行索引; 例:s4.index
- values:列索引; 例:s4.values
Series的常用方法
1.head(),tail()
s4.head(2) # 显式前n条数据
s4.tail(2) # 显式后n条数据
2.unique()
s = Series(data=[1,1,2,2,3,4,5,6,6,6,6,6,6,7,8])
s.unique() # 对Series进行去重
3.add() sub() mul() div() /Series的算术运算
s + s 相当于 s.add(s)
算数运算的法则:索引与之匹配的值进行算数运算,否则补空
s1 = Series(data=[1,2,3,4])
s2 = Series(data=[5,6,7])
s1 + s2 # 结果:
0 6.0
1 8.0
2 10.0
3 NaN
dtype: float64
4.isnull(),notnull()/应用:清洗Series中的空值
s1 = Series(data=[1,2,3,4],index=['a','b','c','e'])
s2 = Series(data=[1,2,3,4],index=['a','d','c','f'])
s = s1 + s2
s # 结果:
a 2.0
b NaN
c 6.0
d NaN
e NaN
f NaN
dtype: float64 # 清洗结果的空值:boolean可以作为索引取值
s[s.notnull()]
3. DataFrame
DataFrame简介
DataFrame是一个【表格型】的数据结构。DataFrame由按一定顺序排列的多列数据组成。设计初衷是将Series的使用场景从一维拓展到多维。DataFrame既有行索引,也有列索引。
- 行索引:index
- 列索引:columns
- 值:values
DataFrame的创建
1.ndarray创建
2.字典创建
示例:
df = DataFrame(data=np.random.randint(0,100,size=(5,6)))
df
dic = {
'name':['zhangsan','lisi','wangwu'],
'salary':[10000,15000,10000]
}
df = DataFrame(data=dic,index=['a','b','c'])
df
DataFrame的属性
- df.values:所有的值
- df.shape:形状
- df.index:行索引
- df.columns:列索引
DataFrame索引操作
1.对列进行索引
# 索引取单列
df['name'] # 索引取多列
df[['age','name']]
2.对行进行索引
# 索引取单行
df.loc['a'] # 显示索引操作
df.iloc[0] # 隐式索引操作 # 索引取多行
df.loc[['a','c']] # 显示索引操作
df.iloc[[0,2]] # 隐式索引操作
3.取单个元素
df.loc['b','salary'] # 显示索引操作
df.iloc[1,1] # 隐式索引操作
4.取多个元素值
df.loc[['b','c'],'salary'] # 显示索引操作
df.iloc[[1,2],1] # 隐式索引操作
DataFrame的切片操作
1.对行进行切片
# 切行
df[0:2]
2.对列进行切片
# 切列
df.iloc[:,0:2]
DataFrame的运算:和Series是一样
元素对应的行列索引保持一致,则元素间可以进行算数运算,否则补空
查看df的数据的数据类型
df.dtypes
df.info():信息更全
时间数据类型的转换:pd.to_datetime(col)
示例:
dic = {
'time':['2019-01-09','2011-11-11','2018-09-22'],
'salary':[1111,2222,3333]
}
df = DataFrame(data=dic) # 将time列转换成时间序列类型
df['time'] = pd.to_datetime(df['time']) # 转换前time的类型是:object
# 转换后time的类型是:datetime64[ns]
# 转换后可以进行datetime64[ns]类型相关的操作
将某一列设置为行索引:df.set_index()
示例:
# 将time这一列作为原数据的行索引
df.set_index(df['time'],inplace=True) # inplace将新表替换原表 # 将之前的time列删掉
df.drop(labels='time',axis=1,inplace=True) # drop函数中axis的0行,1列
4. 总结:
- 将查出来的数据写入文件中:df.to_csv('文件路径')
- 将文件中的数据查出来/pd调用:data = pd.read_csv('文件路径'); 显示前5行:data.head()
- 将时间转换成时间序列化/pd调用:df['date'] = pd.to_datetime(df['date'])
- 使用drop时axis=1代表的是列:df.drop(labels='Unnamed: 0',axis=1,inplace=True),inplace是判断是否用新表替换原表
- data.resample('M'):年:A | 月:M |日:D
- df.info():查看数据的详细信息
- df.describe():返回数据统计的描述
数据分析02 /pandas基础的更多相关文章
- 利用Python进行数据分析(12) pandas基础: 数据合并
pandas 提供了三种主要方法可以对数据进行合并: pandas.merge()方法:数据库风格的合并: pandas.concat()方法:轴向连接,即沿着一条轴将多个对象堆叠到一起: 实例方法c ...
- 利用Python进行数据分析(9) pandas基础: 汇总统计和计算
pandas 对象拥有一些常用的数学和统计方法. 例如,sum() 方法,进行列小计: sum() 方法传入 axis=1 指定为横向汇总,即行小计: idxmax() 获取最大值对应的索 ...
- 利用Python进行数据分析(8) pandas基础: Series和DataFrame的基本操作
一.reindex() 方法:重新索引 针对 Series 重新索引指的是根据index参数重新进行排序. 如果传入的索引值在数据里不存在,则不会报错,而是添加缺失值的新行. 不想用缺失值,可以用 ...
- 利用Python进行数据分析(7) pandas基础: Series和DataFrame的简单介绍
一.pandas 是什么 pandas 是基于 NumPy 的一个 Python 数据分析包,主要目的是为了数据分析.它提供了大量高级的数据结构和对数据处理的方法. pandas 有两个主要的数据结构 ...
- 基于 Python 和 Pandas 的数据分析(2) --- Pandas 基础
在这个用 Python 和 Pandas 实现数据分析的教程中, 我们将明确一些 Pandas 基础知识. 加载到 Pandas Dataframe 的数据形式可以很多, 但是通常需要能形成行和列的数 ...
- 利用Python进行数据分析(10) pandas基础: 处理缺失数据
数据不完整在数据分析的过程中很常见. pandas使用浮点值NaN表示浮点和非浮点数组里的缺失数据. pandas使用isnull()和notnull()函数来判断缺失情况. 对于缺失数据一般处理 ...
- 数据分析:pandas 基础
pandas 是基于 Numpy 构建的含有更高级数据结构和工具的数据分析包 类似于 Numpy 的核心是 ndarray,pandas 也是围绕着 Series 和 DataFrame 两个核心数据 ...
- python数据分析02语法基础
在我来看,没有必要为了数据分析而去精通Python.我鼓励你使用IPython shell和Jupyter试验示例代码,并学习不同类型.函数和方法的文档.虽然我已尽力让本书内容循序渐进,但读者偶尔仍会 ...
- 利用Python进行数据分析(15) pandas基础: 字符串操作
字符串对象方法 split()方法拆分字符串: strip()方法去掉空白符和换行符: split()结合strip()使用: "+"符号可以将多个字符串连接起来: join( ...
随机推荐
- [转] 间接系统调用syscall(SYS_gettid)
点击阅读原文 在linux下每一个进程都一个进程id,类型pid_t,可以由 getpid()获取. POSIX线程也有线程id,类型pthread_t,可以由 pthread_self()获取,线程 ...
- Dart Memo for Android Developers
Dart Memo for Android Developers Dart语言一些语法特点和编程规范. 本文适合: 日常使用Kotlin, 突然想写个Flutter程序的Android程序员. Dar ...
- java map里面进行ASCII 码从小到大排序(字典序)
public static String getAsciiSort(Map<String, Object> map) { List<Entry<String, Object&g ...
- git提交时报错:Updates were rejected because the tip of your current branch is behind
有如下3种解决方法: 1.使用强制push的方法:git push -u origin master -f这样会使远程修改丢失,一般是不可取的,尤其是多人协作开发的时候. 2.push前先将远程rep ...
- ThinkPHP5生成二维码图片与另一张背景图片进行合成
1.PHP方法 public function do_qrcode(){ Vendor('Qrcode.phpqrcode'); Vendor('Qrcode.Compress'); $object ...
- 删库吧,Bug浪——我们在同一家摸鱼的公司
那些口口声声, Bug越来越难写人的,应该盯着你们: 像我一样,我盯着你们,满眼恨意. IT积攒了几十年的漏洞, 所有的死机.溢出.404和超时, 像是专门为你们准备的礼物. 圈复杂度.魔鬼变量.内存 ...
- C#数据结构与算法系列(十五):排序算法(SortAlgorithm)
1.介绍 排序是将一组数据,以指定的顺序进行排序的过程 2.分类 内部排序法:指将需要处理的所有数据都加载到内部存储器中进行排序 外部排序法:数据量过大,无法全部加载到内存中,需要借助外部存储进行排序
- Python实用笔记 (16)函数式编程——偏函数
假设要转换大量的二进制字符串,每次都传入int(x, base=2)非常麻烦,于是,我们想到,可以定义一个int2()的函数,默认把base=2传进去: def int2(x, base=2): re ...
- 高可用服务注册中心(Eureka-Cluster)
在实际生产中,我们需要高可用的集群方案,本章就是基于SpringBoot1.5.4 Cloud(Dalston.SR2) 的高可用Eureka Cluster,以及生产中需要注意的事项… - Eure ...
- (八十九)c#Winform自定义控件-自定义滚动条(treeview、panel、datagridview、listbox、listview、textbox)
官网 http://www.hzhcontrols.com/ 前提 入行已经7,8年了,一直想做一套漂亮点的自定义控件,于是就有了本系列文章. GitHub:https://github.com/kw ...