题意:有一个在k位无符号整数下的模型:for (variable = A; variable != B; variable += C)  statement; 问循环的次数,若“永不停息”(←_←)*,就输出"FOREVER"。

解法:用拓展欧几里德方法求出gcd最大公因数,再利用同余性质转化,求同余方程,或者不定方程。其中题目可化为 a+cx=b(mod 2^k) → cx=b-a(mod 2^k),求最小正整数解。也是求解同余方程。

先将方程化为一般形式:ax=c(mod p) →  ax+py=c 。若 gcd(a,p)|c,就可以利用 ax+py=gcd(a,b)(mod p) [一般没有mod p] ,再把变量 x,y 乘上 c/gcd(a,b) 就是答案了。而要求最小正整数解,就是根据 ax+py=gcd(a,p) → a(x+p/gcd(a,p))+p(y-a/gcd(a,p)=gcd(a,p) ,所有的 x' 都满足 x+p/gcd(a,p) 来进行调整,并且取模。因为 每对 x 与 x' 都相差 p/gcd(a,p),那么根据同余的定义,x 和 x' 关于模 p/gcd(a,p) 同余,所以可以一直取模来调整。而对于 p/gcd(a,p) ,为正时取模才有保证最非负的意义。

注意——位运算超过30位时,尽管变量为long long,也要在之前加上强制转型(long long)。见代码的24行......之前我一次比赛,数组初始化是long long类型的,也要在数字后面加上"LL"或" l l "。

 1 #include<cstdio>
2 #include<cstdlib>
3 #include<cstring>
4 #include<iostream>
5 using namespace std;
6 typedef long long LL;
7
8 LL mabs(LL x) {return x>0?x:-x;}
9 LL exgcd(LL a,LL b,LL& x,LL& y)
10 {
11 if (!b) {x=1,y=0; return a;}
12 LL d,tx,ty;
13 d=exgcd(b,a%b,tx,ty);//bx'+(a%b)y'=1(mod p)
14 x=ty,y=tx-(a/b)*ty;//ay'+b(x'-t*y')=1(mod p)
15 return d;
16 }
17 int main()
18 {
19 LL aa,bb,cc,pp;
20 while (1)
21 {
22 scanf("%I64d%I64d%I64d%I64d",&aa,&bb,&cc,&pp);
23 if (!aa && !bb && !cc && !pp) break;
24 LL a=cc,b=(LL)1<<pp,c=bb-aa,p=(LL)1<<pp;
25 LL d,x,y;//cx=b-a(mod 2^k)-->cx+2^k*y=b-a-->gcd(c,2^k)=1才有解
26 d=exgcd(a,b,x,y);
27 if (c%d!=0) printf("FOREVER\n");
28 else
29 {
30 x=(x*(c/d))%p;//ax+by=c(mod p)的解
31 LL t=mabs(b/d);
32 x=(x%t+t)%t;//最小非负整数解
33 if (!x) x+=t;//为0时要调整
34 printf("%I64d\n",x);
35 }
36 }
37 return 0;
38 }

【poj 2115】C Looooops(数论--拓展欧几里德 求解同余方程 模版题)的更多相关文章

  1. 【hdu 1576】A/B(数论--拓展欧几里德 求逆元 模版题)

    题意:给出 A%9973 和 B,求(A/B)%9973的值. 解法:拓展欧几里德求逆元.由于同余的性质只有在 * 和 + 的情况下一直成立,我们要把 /B 转化为 *B-1,也就是求逆元. 对于 B ...

  2. 【poj 2891】Strange Way to Express Integers(数论--拓展欧几里德 求解同余方程组 模版题)

    题意:Elina看一本刘汝佳的书(O_O*),里面介绍了一种奇怪的方法表示一个非负整数 m .也就是有 k 对 ( ai , ri ) 可以这样表示--m%ai=ri.问 m 的最小值. 解法:拓展欧 ...

  3. 【hdu 3579】Hello Kiki(数论--拓展欧几里德 求解同余方程组)

    题意:Kiki 有 X 个硬币,已知 N 组这样的信息:X%x=Ai , X/x=Mi (x未知).问满足这些条件的最小的硬币数,也就是最小的正整数 X. 解法:转化一下题意就是 拓展欧几里德求解同余 ...

  4. 【poj 1061】青蛙的约会(数论--拓展欧几里德 求解同余方程)

    题意:已知2只青蛙的起始位置 a,b 和跳跃一次的距离 m,n,现在它们沿着一条长度为 l 的纬线(圈)向相同方向跳跃.问它们何时能相遇?(好有聊的青蛙 (΄◞ิ౪◟ิ‵) *)永不相遇就输出&quo ...

  5. POJ - 2115 C Looooops(扩展欧几里德求解模线性方程(线性同余方程))

    d.对于这个循环, for (variable = A; variable != B; variable += C) statement; 给出A,B,C,求在k位存储系统下的循环次数. 例如k=4时 ...

  6. 【hdu 1573】X问题(数论--拓展欧几里德 求解同余方程组的个数)

    题目:求在小于等于N的正整数中有多少个X满足:X mod a[0] = b[0], X mod a[1] = b[1], X mod a[2] = b[2], -, X mod a[i] = b[i] ...

  7. poj 2115 C Looooops(推公式+扩展欧几里得模板)

    Description A Compiler Mystery: We are given a C-language style for loop of type for (variable = A; ...

  8. POJ 2115 C Looooops(扩展欧几里得应用)

    题目地址:POJ 2115 水题. . 公式非常好推.最直接的公式就是a+n*c==b+m*2^k.然后能够变形为模线性方程的样子,就是 n*c+m*2^k==b-a.即求n*c==(b-a)mod( ...

  9. 【题解】POJ 2115 C Looooops (Exgcd)

    POJ 2115:http://poj.org/problem?id=2115 思路 设循环T次 则要满足A≡(B+CT)(mod 2k) 可得 A=B+CT+m*2k 移项得C*T+2k*m=B-A ...

随机推荐

  1. Both Dolby Atmos driver and API need to be installed问题的一个解决方法

    问题的原因在于缺少以下两个部分: Dolby Atmos driver:指你的声卡驱动中自带的杜比文件 如果驱动里没有,说明你的硬件可能不支持杜比,或者驱动太老没有包含杜比. Dolby Atmos ...

  2. 牛客网NC15二叉树的层次遍历

    题目 给定一个二叉树,返回该二叉树层序遍历的结果,(从左到右,一层一层地遍历) 例如: 给定的二叉树是{3,9,20,#,#,15,7}, 该二叉树层序遍历的结果是 [ [3], [9,20], [1 ...

  3. Java并发包源码学习系列:ReentrantReadWriteLock读写锁解析

    目录 ReadWriteLock读写锁概述 读写锁案例 ReentrantReadWriteLock架构总览 Sync重要字段及内部类表示 写锁的获取 void lock() boolean writ ...

  4. Python_列表(list)

    list()类中的提供的操作 1.索引取值 li = [11,22,33,44,55] v1 = li[3] print(li[2]) #索引取出33 print(v1) #索引取出44 print( ...

  5. .NET 5 程序高级调试-WinDbg

    上周和大家分享了.NET 5开源工作流框架elsa,程序跑起来后,想看一下后台线程的执行情况.抓了个进程Dump后,使用WinDbg调试,加载SOS调试器扩展,结果无法正常使用了: 0:000> ...

  6. 记录Js动态加载页面.append、html、appendChild、repend添加元素节点不生效以及解决办法

    今天再优化blog页面的时候添加了个关注按钮和图片,但是页面上这个按钮和图片时有时无,本来是搞后端的,被这个前端的小问题搞得抓耳挠腮的! 网上各种查询解决方案,把我解决问题的艰辛历程分享出来,希望大家 ...

  7. [MRCTF2020]你传你🐎呢之.htaccess

    前言 最近,也是遇到了文件上传的文件,自己搭的靶场都不能用,今天,在这里又遇到了这个题.简单总结下,内容来自互联网,若有侵权,联系我. .htaccess简介 .htaccess文件(分布式配置文件) ...

  8. 算法模板 - C++ 高精度运算

    C++算法板子 高精度 高精度推荐用python来写,python有大整数,这里写的是关于C++的高精度运算模板 1.高精 * 低精 #include <iostream> #includ ...

  9. 【高并发】ReadWriteLock怎么和缓存扯上关系了?!

    写在前面 在实际工作中,有一种非常普遍的并发场景:那就是读多写少的场景.在这种场景下,为了优化程序的性能,我们经常使用缓存来提高应用的访问性能.因为缓存非常适合使用在读多写少的场景中.而在并发场景中, ...

  10. Git 创建新分支检查分支

    创建分支和切换分支,也可以称为检出分支 创建新分支 git branch branchName 切换到新分支 git checkout branchName 上面两个命令也可以合成为一个命令: git ...