(数据科学学习手札94)QGIS+Conda+jupyter玩转Python GIS
本文完整代码及数据已上传至我的
Github
仓库https://github.com/CNFeffery/DataScienceStudyNotes
1 简介
QGIS
随着近些年的发展,得益于其开源免费的特点,功能不断被世界各地的贡献者们开发完善,运算速度也非常出色,使得越来越多的Giser
们从臃肿缓慢的Arcgis
等传统平台转向QGIS
。
图1
最重要的是,QGIS
面向Python
的接口PyQgis
不仅可以用来开发QGIS
插件,还可以配合Conda
完美地避开路径配置的过程,直接与Conda
虚拟环境集成在一起,从而随心所欲地在jupyter notebook
之类的编辑器中书写Python
代码调用各种QGIS
中的地理计算功能,进而弥补geopandas
在某些功能上的尚未完善之处。
图2
本文就将为大家展示如何集成QGIS
到Conda
环境里,并基于建好的环境在jupyter lab
中调用QGIS
从而解决实际计算问题。
2 配置QGIS+Conda+jupyter lab
接下来我们从0开始,完整地展示如何构建QGIS
+Conda
+jupyter lab
的集成。
在已经正确安装和配置anaconda
或miniconda
的机器上,在终端执行conda create -n QGIS python=3.7 -y
来建立一个Python
虚拟环境,这里选择3.7
版本的Python
。
图3
接下来我们执行conda activate QGIS
激活刚刚创建好的环境之后,接着执行conda install -c conda-forge qgis -y
来直接安装QGIS
相关组件。
如果你的下载过程非常缓慢且你没有“特殊”的上网技巧,可以将-c
参数后的源更换为国内的清华大学对应镜像(https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge),因为QGIS
本身有着一定的体积且依赖包众多,这一步耐心等待完成即可。
安装成功后,直接执行qgis
命令就可以打开传统的带界面的QGIS
应用:
图4
但这并不是本文的重点,我们关注的是如何实现在jupyter lab
里写代码调用QGIS
功能,接下来我们来安装jupyter lab
:
conda install nodejs jupyterlab -y
安装完成后我们执行jupyter lab
来启动它:
图5
接着我们创建新的notebook,测试一下QGIS
是否可以正确导入:
图6
如果你可以成功执行上述代码,那么恭喜你已经完成了所有环境配置工作,因为是集成在conda
虚拟环境中的,所以我们免去了所有配置QGIS
相关路径的工作(爽翻了是不是~)。
为了方便下面的功能演示我们顺便把geopandas
也安装了:
conda install -c conda-forge geopandas -y
接下来我们先来查看所有可用的QGIS
中的算法功能:
# 查看可用的所有QGIS功能
from processing.core.Processing import Processing
from qgis.analysis import QgsNativeAlgorithms
Processing.initialize()
QgsApplication.processingRegistry().addProvider(QgsNativeAlgorithms())
for alg in QgsApplication.processingRegistry().algorithms():
print(alg.id(), "中的", alg.displayName(), '可用!')
输出的结果内容非常之多,可以说囊括了我们常用的所有QGIS
功能,譬如渔网创建工具:
图7
正好geopandas
中没有现成的创建渔网功能,下面我们就以为重庆市创建渔网为例。
首先我们导入对应的重庆市域矢量文件,这里的可视化需要matplotlib
和descartes
两个库的支持,请确保已经安装好它们:
import geopandas as gpd
# 从矢量文件创建QGIS图层
chongqing = QgsVectorLayer('重庆市.geojson')
gpd.read_file('重庆市.geojson').plot();
图8
接着我们就需要使用到前面打印功能列表时看到的Create grid
功能,通过下面的方式可以查看所有在功能列表中出现的算法:
from processing import algorithmHelp
# 查看渔网创建工具的说明文档
algorithmHelp("native:creategrid")
图9
如果你使用过QGIS
中的渔网创建工具,通过阅读上述的参数说明一定很快就能明白各个参数的意义,下面我们根据自己的需求创建10000x10000米的正方形渔网:
from processing import run
chongqing = gpd.read_file('重庆市.geojson')
# 获取投影坐标系下的bbox信息
total_bounds = chongqing.to_crs('EPSG:2381').total_bounds
params = {
'INPUT': chongqing,
'TYPE': 2,
'EXTENT': f'{total_bounds[0]},{total_bounds[2]},{total_bounds[1]},{total_bounds[3]}',
'HSPACING': 10000,
'VSPACING': 10000,
'HOVERLAY': 0,
'VOVERLAY': 0,
'CRS': 'EPSG:2381',
'OUTPUT': '重庆10000x10000渔网测试.geojson' # 导出到外部GeoJSON文件
}
feedback = QgsProcessingFeedback()
run("native:creategrid", params, feedback=feedback)
在QGIS
中查看渔网结果:
图10
通过geopandas
查看坐标参考系信息:
图11
通过这样的方式,我们就可以实现在外部编辑器中灵活调用QGIS
工具的目的。
以上就是本文的全部内容,欢迎在评论区与我进行讨论~
(数据科学学习手札94)QGIS+Conda+jupyter玩转Python GIS的更多相关文章
- (数据科学学习手札81)conda+jupyter玩转数据科学环境搭建
本文示例yaml文件已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 我们在使用Python进行数据分析时,很 ...
- (数据科学学习手札64)在jupyter notebook中利用kepler.gl进行空间数据可视化
一.简介 kepler.gl是由Uber开发的进行空间数据可视化的开源工具,是Uber内部进行空间数据可视化的默认工具,通过其面向Python开放的接口包keplergl,我们可以在jupyter n ...
- (数据科学学习手札95)elyra——jupyter lab最强插件
本文示例文件已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 jupyter lab是我最喜欢的编辑器,在过往 ...
- (数据科学学习手札95)elyra——jupyter lab平台最强插件集
本文示例文件已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 jupyter lab是我最喜欢的编辑器,在过往 ...
- (数据科学学习手札08)系统聚类法的Python源码实现(与Python,R自带方法进行比较)
聚类分析是数据挖掘方法中应用非常广泛的一项,而聚类分析根据其大体方法的不同又分为系统聚类和快速聚类,其中系统聚类的优点是可以很直观的得到聚类数不同时具体类中包括了哪些样本,而Python和R中都有直接 ...
- (数据科学学习手札69)详解pandas中的map、apply、applymap、groupby、agg
*从本篇开始所有文章的数据和代码都已上传至我的github仓库:https://github.com/CNFeffery/DataScienceStudyNotes 一.简介 pandas提供了很多方 ...
- (数据科学学习手札72)用pdpipe搭建pandas数据分析流水线
1 简介 在数据分析任务中,从原始数据读入,到最后分析结果出炉,中间绝大部分时间都是在对数据进行一步又一步的加工规整,以流水线(pipeline)的方式完成此过程更有利于梳理分析脉络,也更有利于查错改 ...
- (数据科学学习手札75)基于geopandas的空间数据分析——坐标参考系篇
本文对应代码已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 在上一篇文章中我们对geopandas中的数据结 ...
- (数据科学学习手札55)利用ggthemr来美化ggplot2图像
一.简介 R中的ggplot2是一个非常强大灵活的数据可视化包,熟悉其绘图规则后便可以自由地生成各种可视化图像,但其默认的色彩和样式在很多时候难免有些过于朴素,本文将要介绍的ggthemr包专门针对原 ...
随机推荐
- Python匿名函数_return语句
Python匿名函数: 使用 lambda 关键字创建匿名函数: lambda 定义的函数只是一个表达式,而不是代码块 lambda 函数拥有自己的命名空间,不能够访问参数列表之外的 或 全局命名空间 ...
- Canvas知识点补充
Canvas笔记 复习 初识canvas <canvas> 是 HTML5 新增的,一个可以使用脚本(通常为 JavaScript) 在其中绘制图像的 HTML 元素.它可以用来制作照片集 ...
- C/C++编程笔记:C++入门知识丨认识C++面向过程编程的特点
一. 本篇要学习的内容和知识结构概览 二. 知识点逐条分析 1. 使用函数重载 C++允许为同一个函数定义几个版本, 从而使一个函数名具有多种功能, 这称之为函数重载. 像这样: 虽然函数名一样, 但 ...
- 4.15 省选模拟赛 编码 trie树 前缀和优化建图 2-sat
好题 np. 对于20分 显然可以爆搜. 对于50分 可以发现每个字符串上的问号要么是0,要么是1.考虑枚举一个字符串当前是0还是1 这会和其他字符串产生矛盾. 所以容易 发现这是一个2-sat问题. ...
- Go语言系列(三)之数组和切片
<Go语言系列文章> Go语言系列(一)之Go的安装和使用 Go语言系列(二)之基础语法总结 1. 数组 数组用于存储若干个相同类型的变量的集合.数组中每个变量称为数组的元素,每个元素都有 ...
- C语言学习笔记之输出缓冲
在c语言中经常用到输出函数printf,当我们像往常一样在输出函数中输入我们的想要的输出的东西后加\n换行 验证结果如我们输出的一样 如果我们在后面加入死循环会不会出现这些语句呢 结果卡死了,可还是输 ...
- UIAutomator环境Android8.0 环境异常解决
个人PC环境 ANDROID_HOME:F:\1Study\Andriod\51zxw_2018-0102\Sdk ANT_HOME:D:\ant\apache-ant-1.10.5\ CLASSPA ...
- FPN和他的子孙们
FPN 方框里表示top down里每层有两个卷积操作 PAN:添加一个 bottom up线 NAS-FPN:基于搜索结构的FPN Fully-conencted FPN:全连接的FPN Si ...
- 在Springboot中写使用jsp
jsp其实可以看成一种模板语言,在Springboot中我们同样可以使用jsp.我们可以把引入jsp的过程分为三步: 第一步:POM文件加依赖: <!--引入springboot内嵌的tomca ...
- Eclipse工具的简单使用
前言 虽然编写Java用Idea比较好,但是对于正处于大学阶段的我,还是要和老师的步伐保持一致,但是,用的Idea这个工具多了,我就感觉对eclipse这个工具不是怎么熟悉了,甚至还有点对一些工具的使 ...