直接理解转置卷积(Transposed convolution)的各种情况
使用GAN生成图像必不可少的层就是上采样,其中最常用的就是转置卷积(Transposed Convolution)。如果把卷积操作转换为矩阵乘法的形式,转置卷积实际上就是将其中的矩阵进行转置,从而产生逆向的效果。所谓效果仅仅在于特征图的形状,也就是说,如果卷积将特征图从形状a映射到形状b,其对应的转置卷积就是从形状b映射回形状a,而其中的值并不一一对应,是不可逆的。另外,不要把逆卷积(Deconvolution)和转置卷积混淆,逆卷积的目标在于构建输入特征图的稀疏编码(Sparse coding),并不是以上采样为目的的。但是转置卷积的确是来源于逆卷积,关于逆卷积与转置卷积的论文请看[1][2]。
下面直接对转置卷积的各种情况进行举例,从而全面理解转置卷积在Pytorch中的运算机制。使用Pytorch而不是TF的原因在于,TF中的padding方式只有两种,即valid与same,并不能很好地帮我们理解原理。而且TF和Pytorch插入0值的方式有些差异,虽然在模型层面,你只需关注模型输入输出的形状,隐层的微小差异可以通过训练来抵消,但是为了更好得把握模型结构,最好还是使用Pytorch。
对于Pytorch的nn.ConvTranspose2d()的参数,下面的讨论不考虑膨胀度dilation,默认为1;output_padding就是在最终的输出特征外面再加上几层0,所以也不讨论,默认为0;为了便于理解,bias也忽略不计,设为False;不失一般性,输入输出的channels都设为1。除了对将卷积转换成矩阵乘法的理解外,理解难点主要在于stride和padding的变化对转置卷积产生的影响,因此下面我们主要变化kernel_size、stride、padding三个参数来分析各种情况。
举例之前要注意,转换为矩阵的形式是由卷积的结果得到的,矩阵形式本身是不能直接获得的。要注意这个因果关系,转换为矩阵形式是为了便于理解,以及推导转置卷积。
实例分析
kernel_size = 2, stride = 1, padding = 0
首先是kernel_size = 2,stride=1,padding=0的情况,如下图:
图中上半部分表示将卷积转换为矩阵乘法的形式。在卷积中,我们是输入一个3x3的特征图,输出2x2的特征图,矩阵乘法形式如上图上中部分所示;转置卷积就是将这个矩阵乘法反过来,如上图下中部分所示。然后将下中部分的矩阵乘法转换为卷积的形式,即可得到转置卷积的示意图如上图右下部分所示。
kernel_size = 2, stride = 1, padding = 1
然后是kernel_size = 2,stride=1,padding=1的情况(因为第一张图中已有,虚线与注释都不加了):
与上一张图的主要不同之处在于转置卷积将卷积结果的最外层去掉,这是因为padding=1,也正符合与卷积相反的操作。也就是说,padding越大,转置卷积就会去掉越多的外层,输出就会越小。
kernel_size = 3, stride = 1, padding = 1
为了分析转置卷积的卷积核与卷积的卷积核的区别,这次把kernel_size变为3,如下图:
可以看出,转置卷积的先将输入padding 2层,用于抵消卷积核带来的规模上的减小,从而将输出扩增到相对应卷积操作的输入大小。然后,我们可以发现,卷积核是输入的卷积核的逆序。也就是说,我们输入函数中的是1~9的方阵,而它实际作为卷积核的是9~1的方阵。最后,因为padding=1,这对于卷积操作是向外加一层0,而对于逆卷积,就是去掉最外面的一层,所以得到最终3x3的结果。
kernel_size = 2, stride = 2, padding = 1
最后,分析stride对转置卷积的影响,将stride设为2,如下图:
分析在图中都已写明。你可能会奇怪,为什么这里转置卷积最终输出与卷积的输入形状不同,这是因为卷积的padding并没有被全都用上(只计算了一边),而转置卷积最后却把两边的padding都去掉了,所以造成了卷积与转置卷积不对应的情况。
总结
经过对以上各种实例的分析,对于某个$kernel \,size=k,stride=s,padding=p$的转置卷积,如果输入宽高都为$n$,则输出宽高为
$\begin{aligned} m&=ns-(s-1)+2(k-1)-(k-1)-2p\\ &=(n-1)s-2p+k \\ \end{aligned}$
实际上,卷积与转置卷积除了输入输出的形状上相反以外,没有别的联系,所以我们只要会计算转置卷积输出的形状即可。
以上图都是用excel作的,已上传至博客园文件,需要的可以下载(点击链接)。
参考文献
[1] Zeiler M D, Krishnan D, Taylor G W, et al. Deconvolutional networks[C]. Computer Vision and Pattern Recognition, 2010.
[2] Zeiler M D, Fergus R. Visualizing and Understanding Convolutional Networks[C]. European Conference on Computer Vision, 2013.
直接理解转置卷积(Transposed convolution)的各种情况的更多相关文章
- 转置卷积Transposed Convolution
转置卷积Transposed Convolution 我们为卷积神经网络引入的层,包括卷积层和池层,通常会减小输入的宽度和高度,或者保持不变.然而,语义分割和生成对抗网络等应用程序需要预测每个像素的值 ...
- CNN:转置卷积输出分辨率计算
上一篇介绍了卷积的输出分辨率计算,现在这一篇就来写下转置卷积的分辨率计算.转置卷积(Transposed convolution),转置卷积也有叫反卷积(deconvolution)或者fractio ...
- 『TensotFlow』转置卷积
网上解释 作者:张萌链接:https://www.zhihu.com/question/43609045/answer/120266511来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业 ...
- 一文搞懂 deconvolution、transposed convolution、sub-pixel or fractional convolution
目录 写在前面 什么是deconvolution convolution过程 transposed convolution过程 transposed convolution的计算 整除的情况 不整除的 ...
- 由浅入深:CNN中卷积层与转置卷积层的关系
欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由forrestlin发表于云+社区专栏 导语:转置卷积层(Transpose Convolution Layer)又称反卷积层或分数卷 ...
- 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (二)
本文属于图神经网络的系列文章,文章目录如下: 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (一) 从图(Graph)到图卷积(Graph Convolutio ...
- pytorch 不使用转置卷积来实现上采样
上采样(upsampling)一般包括2种方式: Resize,如双线性插值直接缩放,类似于图像缩放,概念可见最邻近插值算法和双线性插值算法——图像缩放 Deconvolution,也叫Transpo ...
- 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (一)
本文属于图神经网络的系列文章,文章目录如下: 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (一) 从图(Graph)到图卷积(Graph Convolutio ...
- 卷积(convolution)与相关(correlation)(matlab 实现)
1. 卷积(convolution) 输出 y(n) 是作为在 x(k) 和 h(n−k)(反转和移位)重叠之下的样本和求出的. 考虑下面两个序列: x(n)=[3,11,7,0,−1,4,2],−3 ...
随机推荐
- spring in action-note-2
1.AOP:在软件业,AOP为Aspect Oriented Programming的缩写,意为:面向切面编程,通过预编译方式和运行期动态代理实现程序功能的统一维护的一种技术.AOP是OOP的延续,是 ...
- 安装Ubuntu虚拟机
centos已经满足不了我了,这里就装了个虚拟机,等有钱了再单配台单系统的Linux主机. 一.下载Ubuntu的ISO文件 用国内的网易镜像站点 进去点个16.04.6,然后下个64位的.iso就好 ...
- Java之再初识二
本篇博客将继续介绍Java基础知识 1.Java包含哪些数据类型 2.Java基本数据类型转换包含哪两类 3.为什么需要包装类 4.int与integer有什么区别,它们之间如何相互转化的 5.逻辑运 ...
- ApiView 的使用
1.APIview使用. https://www.cnblogs.com/xiaonq/p/10124104.html ModelVIewSet 是对 APIView 封装 ModelSerial ...
- Book of Shaders 03 - 学习随机与噪声生成算法
0x00 随机 我们不能预测天空中乌云的样子,因为它的纹理总是具有不可预测性.这种不可预测性叫做随机 (random). 在计算机图形学中,我们通常使用随机来模拟自然界中的噪声.如何获得一个随机值呢, ...
- rustup命令速度慢
通过以下命令更换镜像: $ENV:RUSTUP_DIST_SERVER='https://mirrors.ustc.edu.cn/rust-static' $ENV:RUSTUP_UPDATE_ROO ...
- 洛谷 P3413 【萌数】
敲完这篇题解,我就,我就,我就,嗯,好,就这样吧... 思路分析: 首先我们要知道一个回文串的性质--假如说一个[l-1,r+1]的串是回文的,那么[l,r]一定也是回文的. 所以我们只要记录前一个数 ...
- 在Windows7系统中设置虚拟内存大小
当我们的电脑物理内存空间不够用时,操作系统就会自动从硬盘空间上分出一块空间来当内存使用,这就是虚拟内存.可以说虚拟内存是物理内存的补充,是备用的物理内存.一般来说,如果电脑里的程序不多,占用内存资源不 ...
- ubuntu 19.10 中防火墙iptables配置
$sudo which iptables /usr/sbin/iptables说明有安装 如果没有安装,那么使用sudo apt-get install iptables 安装. 刚装机,是这个样 ...
- Cesium资料
CesiumLab论坛:https://github.com/cesiumlab/cesium-lab-forum/issues简书上的Cesium实验室文集:https://www.jianshu. ...