我看了出题人本题的做法,感觉很难写,就自己胡了一个\(O((n + m) \sqrt n)\)的做法。

第一步我的想法与出题人一样,都是考虑容斥降维。对第\(i\)组询问,我们枚举两个事件中较大的一个点\((a, b)\),它对答案的贡献为:所有满足\(r_{i, 1} \leq x \leq a, c_{i, 1} \leq y \leq b\)且\((x, y) \neq (a, b)\)的点数。把这个贡献按照常见的二维前缀和的方式拆成四种贡献(有些贡献要乘以\(-1\)的系数):

贡献一:所有满足\(x \leq a, y \leq b, (x, y) \neq (a, b)\)的点数。

贡献二:所有满足\(x < r_{i, 1}, y < c_{i, 1}\)的点数。

贡献三:所有满足\(x < r_{i, 1}, y \leq b\)的点数。

贡献四:所有满足\(x \leq a, y < c_{i, 1}\)的点数。

考虑贡献一只和矩形内的每个点有关,可以用树状数组预处理比每个点“小”的点数再做一次静态二维数点。贡献二**只和\(r_{i, 1}, c_{i, 1}\)有关,可以用两次二维数点解决。由对称性,我们只需要考虑贡献三如何计算(贡献四只需要把\(x, y\)反过来就变成贡献三了)。

贡献三里面对\((a, b)\)有\(r_{i, 1} \leq a \leq r_{i, 2}, c_{i, 1} \leq b \leq c_{i, 2}\)的限制,我们再把\(c_{i, 1} \leq b \leq c_{i, 2}\)这个条件拆成前缀和,于是问题就变成了:

每次询问是一个三元组\((l, r, w)\),你需要回答满足\((a, b) \leq (c, d)\),\(a < l \leq c \leq r, b < d \leq w\)的点对数量。

接下来考虑这个三维问题怎么做。我们把\(0, 1, \cdots, n\)中所有\(\lfloor \sqrt{n} \rfloor\)的倍数称为关键点,建立\(O(\sqrt n)\)个关键点。对每个询问\((l, r, w)\),我们设\(\leq l\)且离\(l\)最近的关键点为\(l'\),那么考虑将\((l, r, w)\)的\(l\)每次减1移动到\(l'\)的时候答案的增量都可以用二维数点来计算

这样,问题变成了\(O(m)\)组\(l\)是关键点的询问和\(O(m \sqrt m)\)组二维数点的询问。后者可以用扫描线 + \(O(\sqrt n)\)修改,\(O(1)\)询问的分块数据结构来解决。而前者可以枚举\(l\),算出\(x \ge l\)的每个点\((x, y)\)对答案的贡献(这只需要一次前缀和),然后对\(r\)做扫描线,问题又变成了:单点加一个数,询问前缀和。这一问题可以用\(O(1)\)修改,\(O(\sqrt n)\)询问的分块结构来解决。

总结:

  1. “容斥降维”在某些问题上比较常用,比如静态询问坐标上一个直角边平行于坐标轴的点数。
  2. 本文后半部分的操作实际上是回滚莫队的思想,再结合了lxl提出的莫队二次离线的思想。

代码如下(不要在意我的辣鸡英文水平了):


#include <bits/stdc++.h>
using namespace std; const int N = 100600, M = 200005, LOG = 25, LIM = 400; template <class T>
void read(T &x) {
int sgn = 1;
char ch;
x = 0;
for (ch = getchar(); (ch < '0' || ch > '9') && ch != '-'; ch = getchar()) ;
if (ch == '-') ch = getchar(), sgn = -1;
for (; '0' <= ch && ch <= '9'; ch = getchar()) x = x * 10 + ch - '0';
x *= sgn;
}
template <class T>
void write(T x) {
if (x < 0) putchar('-'), write(-x);
else if (x < 10) putchar(x + '0');
else write(x / 10), putchar(x % 10 + '0');
} //Fenwick tree and persistent segment tree
//num_i denotes the number of integer j such that 1 <= j < i and p_j < p_i int n, m, lim, p[N], num[N], fenwick[N];
int rt[N], sgt1[N * LOG], lch[N * LOG], rch[N * LOG], cnt = 0;
long long sgt2[N * LOG], ans[M]; //Fenwick tree
int lowbit(int x) {
return x & -x;
}
void add(int x, int val) {
for (; x <= n; x += lowbit(x)) fenwick[x] += val;
}
int query(int pos) {
int res = 0;
for (; pos; pos ^= lowbit(pos)) res += fenwick[pos];
return res;
}
void get_num() {
for (int i = 0; i <= n; i++) fenwick[i] = 0;
for (int i = 1; i <= n; i++) {
num[i] = query(p[i]);
add(p[i], 1);
}
}
//Persistent segment tree
int newnode() {
int x = ++cnt;
sgt1[x] = 0, sgt2[x] = 0ll;
lch[x] = rch[x] = 0;
return x;
}
int build(int l, int r) {
int x = newnode(), mid = l + r >> 1;
if (l < r) lch[x] = build(l, mid), rch[x] = build(mid + 1, r);
return x;
}
int insert(int pos, int l, int r, int now, int val1, int val2) {
int mid = l + r >> 1, x = newnode();
sgt1[x] = sgt1[now] + val1;
sgt2[x] = sgt2[now] + val2;
lch[x] = lch[now], rch[x] = rch[now];
if (l < r) {
if (pos <= mid) lch[x] = insert(pos, l, mid, lch[now], val1, val2);
else rch[x] = insert(pos, mid + 1, r, rch[now], val1, val2);
}
return x;
}
int query1(int left, int right, int l, int r, int now) {
int mid = l + r >> 1;
if (left > right) return 0;
if (l == left && r == right) return sgt1[now];
else if (right <= mid) return query1(left, right, l, mid, lch[now]);
else if (left > mid) return query1(left, right, mid + 1, r, rch[now]);
else return query1(left, mid, l, mid, lch[now]) + query1(mid + 1, right, mid + 1, r, rch[now]);
}
long long query2(int left, int right, int l, int r, int now) {
int mid = l + r >> 1;
if (left > right) return 0ll;
if (l == left && r == right) return sgt2[now];
else if (right <= mid) return query2(left, right, l, mid, lch[now]);
else if (left > mid) return query2(left, right, mid + 1, r, rch[now]);
else return query2(left, mid, l, mid, lch[now]) + query2(mid + 1, right, mid + 1, r, rch[now]);
}
void build_tree() {
rt[0] = build(1, n);
for (int i = 1; i <= n; i++) {
rt[i] = insert(p[i], 1, n, rt[i - 1], 1, num[i]);
}
} struct qry {
int id, coef;
int l, r, w;
} ;
// A data structure called D1
// O(sqrt(n)) modify
// O(1) query
struct D1 {
int pre1[LIM], pre2[N];
void init() {
for (int i = 0; i <= lim; i++) pre1[i] = 0;
for (int i = 0; i <= n; i++) pre2[i] = 0;
}
void add(int pos, int val) {
for (int i = pos / lim; i <= lim; i++) pre1[i] += val;
for (int i = pos; i < pos / lim * lim + lim; i++) pre2[i] += val;
}
int query(int pos) {
if (pos / lim) return pre1[pos / lim - 1] + pre2[pos];
else return pre2[pos];
}
} DS1;
// A data structure called D2
// O(1) modify
// O(sqrt(n)) query
struct D2 {
long long vec1[LIM], vec2[N];
void init() {
for (int i = 0; i <= lim; i++) vec1[i] = 0ll;
for (int i = 0; i <= n; i++) vec2[i] = 0ll;
}
void add(int pos, int val) {
vec1[pos / lim] += val;
vec2[pos] += val;
}
long long query(int pos) {
long long res = 0;
for (int i = 0; i < pos / lim; i++) res += vec1[i];
for (int i = pos / lim * lim; i <= pos; i++) res += vec2[i];
return res;
}
} DS2;
struct D3 {
int perm[N], num[N];
vector<qry> qry1[N], qry2[N];
void add_qry(qry q) {
qry1[q.l].push_back(q), qry2[q.r].push_back(q);
}
// We proceed the impact of O(sqrt(n)) values in the part.
// Then we can assume that lim | l or l = n.
void proceed_small() {
DS1.init();
for (int i = 1; i <= n; i++) {
DS1.add(perm[i], 1);
for (int j = 0; j < qry2[i].size(); j++) {
int id = qry2[i][j].id, coef = qry2[i][j].coef;
int l = qry2[i][j].l, w = qry2[i][j].w;
for (int i = l / lim * lim; i < l; i++) {
if (i && perm[i] <= w) {
ans[id] += coef * (DS1.query(w) - DS1.query(perm[i]));
ans[id] -= coef * num[i];
}
}
}
int ri = min(n, (i / lim + 1) * lim - 1);
for (int j = i + 1; j <= ri; j++) {
for (int k = 0; k < qry1[j].size(); k++) {
int id = qry1[j][k].id, coef = qry1[j][k].coef;
int w = qry1[j][k].w;
if (perm[i] <= w) ans[id] -= coef * (DS1.query(w) - DS1.query(perm[i]));
}
}
}
} int tmp[N];
void proceed_big() {
for (int i = 0; i < n; i += lim) {
for (int j = 0; j <= n; j++) tmp[j] = 0;
for (int j = 1; j < i; j++) tmp[perm[j]]++;
for (int j = 1; j <= n; j++) tmp[j] += tmp[j - 1];
DS2.init();
for (int j = i; j <= n; j++) {
DS2.add(perm[j], tmp[perm[j]]);
for (int k = 0; k < qry2[j].size(); k++) {
int id = qry2[j][k].id, coef = qry2[j][k].coef;
int l = qry2[j][k].l, w = qry2[j][k].w;
if (i <= l && l < i + lim) ans[id] += 1ll * coef * DS2.query(w);
}
}
}
}
} P1, P2;
//P1 and P2 denotes the two different but similar parts of the algorithm. int main() {
read(n), read(m);
for (int i = 1; i <= n; i++) read(p[i]);
get_num();
build_tree();
//Initialize P1 and P2.
while (lim * lim <= n) lim++;
for (int i = 1; i <= n; i++) {
P1.perm[i] = p[i], P2.perm[p[i]] = i;
P1.num[i] = num[i], P2.num[p[i]] = num[i];
}
for (int i = 0; i <= n; i++) {
P1.qry1[i].clear(), P1.qry2[i].clear();
P2.qry1[i].clear(), P2.qry2[i].clear();
}
for (int i = 1; i <= m; i++) {
int lx, rx, ly, ry;
read(lx), read(rx), read(ly), read(ry);
// The first part
// You can avoid persistent segment tree since offline queries are allowed.
// But as a matter of convenient, I use persistent segment tree.
ans[i] = query2(ly, ry, 1, n, rt[rx]) - query2(ly, ry, 1, n, rt[lx - 1]);
int cnt1 = query1(1, ly - 1, 1, n, rt[lx - 1]), cnt2 = query1(ly, ry, 1, n, rt[rx]) - query1(ly, ry, 1, n, rt[lx - 1]);
ans[i] += 1ll * cnt1 * cnt2;
// The second part
// We divide the whole query into four parts.
// Then we should proceed these 4m queries offline, applying block algorithm.
qry qry1 = {i, -1, lx, rx, ry}, qry2 = {i, 1, lx, rx, ly - 1};
qry qry3 = {i, -1, ly, ry, rx}, qry4 = {i, 1, ly, ry, lx - 1};
P1.add_qry(qry1), P1.add_qry(qry2);
P2.add_qry(qry3), P2.add_qry(qry4);
}
P1.proceed_small(), P1.proceed_big();
P2.proceed_small(), P2.proceed_big();
for (int i = 1; i <= m; i++) write(ans[i]), putchar('\n');
return 0;
}

NOI 2020 D1T3 本人题解的更多相关文章

  1. 开始是为了结束,结束是新的开始——NOI 2020 游记

    Day 0 报道日 晚上的时候我们的教练给我们做考前动员.给我们讲:NOI的五个小时需要认真的规划,不能被T1打乱节奏.他让我们思考明天的策略,把可能出问题的地方都想清楚. 结果后来,宿管给我测体温, ...

  2. [NOI 2020 Online] 入门组T1 文具采购(洛谷 P6188)题解

    原题传送门 题目部分:(来自于考试题面,经整理) [题目描述] 小明的班上共有 n 元班费,同学们准备使用班费集体购买 3 种物品: 1.圆规,每个 7 元. 2.笔,每支 4 元. 3.笔记本,每本 ...

  3. NOI 2021 部分题目题解

    最近几天复盘了一下NOI 2021,愈发发觉自己的愚蠢,可惜D2T3仍是不会,于是只写前面的题解 Day1 T1 可以发现,每次相当于将 \(x\to y\) 染上一种全新颜色,然后一条边是重边当且仅 ...

  4. NOI 2011 兔农 题解

    事先声明,本博客代码主要模仿accepoc,且仅针对一般如本博主一样的蒟蒻. 这道题不得不说数据良心,给了75分的水分,但剩下25分真心很难得到,因此我们就来讲一讲这剩下的25分. 首先,有数据可知他 ...

  5. NOI Online 提高组 题解

    来补坑了-- 个人认为三道题难度差不多-- 还有要说一嘴,为啥我在其他网站代码都好好的,复制到 cnblogs 上 Tab 就成 8 空格了?不过也懒得改了. T1 序列 首先,遇到这种加一减一还带附 ...

  6. 『Mivik的萌新赛 & Chino的比赛 2020』T2 题解 Galgame

    如果这是我最后一篇题解,请每年为我上坟. Galgame 题目传送门 Decription as_lky 搞到了很多 Galgame(真的很多!).一款 Galgame 可以被描述为很多场景(Scen ...

  7. Solution -「NOI 2020」「洛谷 P6776」超现实树

    \(\mathcal{Description}\)   Link.   对于非空二叉树 \(T\),定义 \(\operatorname{grow}(T)\) 为所有能通过若干次"替换 \( ...

  8. JZOJ 5409 Fantasy & NOI 2010 超级钢琴 题解

    其实早在 2020-12-26 的比赛我们就做过 5409. Fantasy 这可是紫题啊 题目大意 给你一个序列,求长度在 \([L,R]\) 区间内的 \(k\) 个连续子序列的最大和 题解 如此 ...

  9. NOI 题库 8471 题解

    8471   切割回文 描述 阿福最近对回文串产生了非常浓厚的兴趣. 如果一个字符串从左往右看和从右往左看完全相同的话,那么就认为这个串是一个回文串.例如,“abcaacba”是一个回文串,“abca ...

随机推荐

  1. 异常记录-Gradle依赖掉坑之旅

    前言 最近在项目中遇到了一个问题,死活拉不下来依赖,耗费了一整天,感觉自己真是菜的抠脚. 没想到今天脑子一清醒,刷刷的问题逐个击破了. 问题描述: 项目成员添加了新的依赖,然后我这边项目拉下来,bui ...

  2. Linux踩坑之云服务器 ssh 连接不上

    前奏:今天没事处理一下之前远程不了Linux桌面的问题时,找到一个解决方法(开始入坑):                     systemctl set-default graphical.tar ...

  3. 文本多行省略号(CSS最优方案)

    Float定位溢出隐藏 优点: 纯CSS实现,性能好,不用js调优 兼容性高 多行省略,自动显示 缺点: 单词截断 代码如下: <div class="ellipses-div&quo ...

  4. time和random模块

    # 时间模块 # 三种时间表现形式 # 时间戳 # 格式化的时间字符串 # 元组(struct_time)结构化时间 struct_time元组共有9个元素(年,月,日,时,分,秒,一年中的第几周,一 ...

  5. linux正则表达式符号集

    \     转义符,忽略其特殊意义: ^  以--开始,^A  以A开始: $ 以--结束,A$ 以A结尾: ^$ 空行: * 0个或多个*前面的任意字符 . 匹配换行符\n之外的任意字符: .* 匹 ...

  6. HttpClient4.3 连接池参数配置及源码解读

    目前所在公司使用HttpClient 4.3.3版本发送Rest请求,调用接口.最近出现了调用查询接口服务慢的生产问题,在排查整个调用链可能存在的问题时(从客户端发起Http请求->ESB-&g ...

  7. 【网鼎杯2020朱雀组】Web WriteUp

    nmap nmap语法,很简单. 127.0.0.1' -iL /flag -oN vege.txt ' phpweb 打开,抓包,发现可以传递函数和其参数 试了一下很多函数都被过滤了,不能执行系统命 ...

  8. 使用大乌龟git和码云搭建版本库

    刚刚过完清明,上班的第一天,大佬跟我说,要用码云和git搭建一个版本库,菜鸡的博主楞了半天,然后赶紧上网找资料,此时,一旁的大佬已经看不下去了,终于,出手了....... 1. 首先,先把大乌龟git ...

  9. java面试必问:多线程的实现和同步机制,一文帮你搞定多线程编程

    前言 进程:一个计算机程序的运行实例,包含了需要执行的指令:有自己的独立地址空间,包含程序内容和数据:不同进程的地址空间是互相隔离的:进程拥有各种资源和状态信息,包括打开的文件.子进程和信号处理. 线 ...

  10. And Or IN Not操作符

    再sql中And比or运算符优先级要更高,比如说  条件1 Or 条件2 And 条件3     如果先执行or,就是1or2   再and3 但是实际上是  2and3 再or 1,所以如果想要 1 ...