题解 洛谷P6853 station
蒟蒻语
还是蒟蒻太菜了,这场 div1 竟然一题都没做出来/kk/kk/kk
蒟蒻解
首先我们把每 5 个点分为一组。然后分组结果大概是这样子:

可以看到首先下面需要有一条边来让整张图有一条支撑的路径。然后每一组内都有 6 条边。
那么这样子的图是可行的。原因:
- 对于每条线路,都至少经过两个车站,满足第一个条件。
- 对于所有点,经过他的路径数不超过 \(3\),满足第二个条件。
- 对于任意两条边, 都与最下面的那条边有交点,满足第三个条件。
那么可以先将边的数量-1, 然后再按模 6 的余数分类,单独处理 (细节看代码)。
小蒟蒻太菜了,不会证明这为什么这样点数是最小的。
蒟蒻码
#include<bits/stdc++.h>
#define re register
#define L(i, j, k) for(re int i = j; i <= k; i++)
#define R(i, j, k) for(re int i = j; i >= k; i--)
#define db double
#define ll long long
using namespace std;
int n, m, tot;
void print(int x) { // 把每一个组内的点输出
L(i, 1, x) {
L(j, 1, 3) printf("2 %d %d\n", (i - 1) * 5 + 1, (i - 1) * 5 + 2 + j);
L(j, 1, 3) printf("2 %d %d\n", (i - 1) * 5 + 2, (i - 1) * 5 + 2 + j);
}
}
int main() {
scanf("%d", &n), n--; // 先在最下面放一条线
int ds = n / 6 * 5;
if(n % 6 == 0) {
printf("%d\n", ds);
printf("%d ", ds / 5 * 3);
L(i, 1, ds) if(i % 5 == 0 || i % 5 == 3 || i % 5 == 4) printf("%d ", i) // 输出这一个组内元素
puts("");
print(ds / 5);
}
else if(n % 6 == 1) {
ds -= 5; // 特别注意一下,为了让剩下的那条边有依靠,这里是把一个组再拆开来qwq
printf("%d\n", ds + 7);
printf("%d ", ds / 5 * 3 + 4);
L(i, 1, ds) if(i % 5 == 0 || i % 5 == 3 || i % 5 == 4) printf("%d ", i);
printf("%d %d %d %d\n", ds + 1, ds + 2, ds + 3, ds + 4);
print(ds / 5);
printf("2 %d %d\n", ds + 5, ds + 1); // 处理不属于那一组一组的那些边
printf("2 %d %d\n", ds + 5, ds + 2);
printf("2 %d %d\n", ds + 5, ds + 3);
printf("2 %d %d\n", ds + 6, ds + 2);
printf("2 %d %d\n", ds + 6, ds + 3);
printf("2 %d %d\n", ds + 7, ds + 1);
printf("2 %d %d\n", ds + 7, ds + 4);
} // 后面的分类讨论和上面的几乎一样
else if(n % 6 == 2) {
printf("%d\n", ds + 3);
printf("%d ", ds / 5 * 3 + 2);
L(i, 1, ds) if(i % 5 == 0 || i % 5 == 3 || i % 5 == 4) printf("%d ", i);
printf("%d %d\n", ds + 1, ds + 2);
print(ds / 5);
printf("2 %d %d\n", ds + 3, ds + 1);
printf("2 %d %d\n", ds + 3, ds + 2);
}
else if(n % 6 == 3) {
printf("%d\n", ds + 4);
printf("%d ", ds / 5 * 3 + 3);
L(i, 1, ds) if(i % 5 == 0 || i % 5 == 3 || i % 5 == 4) printf("%d ", i);
printf("%d %d %d\n", ds + 1, ds + 2, ds + 3);
print(ds / 5);
printf("2 %d %d\n", ds + 4, ds + 1);
printf("2 %d %d\n", ds + 4, ds + 2);
printf("2 %d %d\n", ds + 4, ds + 3);
}
else if(n % 6 == 4) {
printf("%d\n", ds + 4);
printf("%d ", ds / 5 * 3 + 2);
L(i, 1, ds) if(i % 5 == 0 || i % 5 == 3 || i % 5 == 4) printf("%d ", i);
printf("%d %d\n", ds + 1, ds + 2);
print(ds / 5);
printf("2 %d %d\n", ds + 3, ds + 1);
printf("2 %d %d\n", ds + 3, ds + 2);
printf("2 %d %d\n", ds + 4, ds + 1);
printf("2 %d %d\n", ds + 4, ds + 2);
}
else if(n % 6 == 5) {
printf("%d\n", ds + 5);
printf("%d ", ds / 5 * 3 + 3);
L(i, 1, ds) if(i % 5 == 0 || i % 5 == 3 || i % 5 == 4) printf("%d ", i);
printf("%d %d %d\n", ds + 1, ds + 2, ds + 3);
print(ds / 5);
printf("2 %d %d\n", ds + 4, ds + 1);
printf("2 %d %d\n", ds + 4, ds + 2);
printf("2 %d %d\n", ds + 5, ds + 1);
printf("2 %d %d\n", ds + 5, ds + 2);
printf("2 %d %d\n", ds + 5, ds + 3);
}
return 0;
}
题解 洛谷P6853 station的更多相关文章
- 题解 洛谷P5018【对称二叉树】(noip2018T4)
\(noip2018\) \(T4\)题解 其实呢,我是觉得这题比\(T3\)水到不知道哪里去了 毕竟我比较菜,不大会\(dp\) 好了开始讲正事 这题其实考察的其实就是选手对D(大)F(法)S(师) ...
- 题解 洛谷 P3396 【哈希冲突】(根号分治)
根号分治 前言 本题是一道讲解根号分治思想的论文题(然鹅我并没有找到论文),正 如论文中所说,根号算法--不仅是分块,根号分治利用的思想和分块像 似却又不同,某一篇洛谷日报中说过,分块算法实质上是一种 ...
- 题解-洛谷P5410 【模板】扩展 KMP(Z 函数)
题面 洛谷P5410 [模板]扩展 KMP(Z 函数) 给定两个字符串 \(a,b\),要求出两个数组:\(b\) 的 \(z\) 函数数组 \(z\).\(b\) 与 \(a\) 的每一个后缀的 L ...
- 题解-洛谷P4229 某位歌姬的故事
题面 洛谷P4229 某位歌姬的故事 \(T\) 组测试数据.有 \(n\) 个音节,每个音节 \(h_i\in[1,A]\),还有 \(m\) 个限制 \((l_i,r_i,g_i)\) 表示 \( ...
- 题解-洛谷P4724 【模板】三维凸包
洛谷P4724 [模板]三维凸包 给出空间中 \(n\) 个点 \(p_i\),求凸包表面积. 数据范围:\(1\le n\le 2000\). 这篇题解因为是世界上最逊的人写的,所以也会有求凸包体积 ...
- 题解-洛谷P4859 已经没有什么好害怕的了
洛谷P4859 已经没有什么好害怕的了 给定 \(n\) 和 \(k\),\(n\) 个糖果能量 \(a_i\) 和 \(n\) 个药片能量 \(b_i\),每个 \(a_i\) 和 \(b_i\) ...
- 题解-洛谷P5217 贫穷
洛谷P5217 贫穷 给定长度为 \(n\) 的初始文本 \(s\),有 \(m\) 个如下操作: \(\texttt{I x c}\),在第 \(x\) 个字母后面插入一个 \(c\). \(\te ...
- 题解 洛谷 P2010 【回文日期】
By:Soroak 洛谷博客 知识点:模拟+暴力枚举 思路:题目中有提到闰年然后很多人就认为,闰年是需要判断的其实,含有2月29号的回文串,前四位是一个闰年那么我们就可以直接进行暴力枚举 一些小细节: ...
- 题解 洛谷P2158 【[SDOI2008]仪仗队】
本文搬自本人洛谷博客 题目 本文进行了一定的更新 优化了 Markdown 中 Latex 语句的运用,加强了可读性 补充了"我们仍不曾知晓得 消失的 性质5 ",加强了推导的严谨 ...
随机推荐
- 消失的两个数字(1-N缺两个数)
给定一个数组,包含从 1 到 N 所有的整数,但其中缺了两个数字.你能在 O(N) 时间内只用 O(1) 的空间找到它们吗? 以任意顺序返回这两个数字均可. 示例 1: 输入: [1]输出: [2,3 ...
- MySQL索引结构之B+树索引(面)
首先要明白索引(index)是在存储引擎(storage engine)层面实现的,而不是server层面.不是所有的存储引擎都支持所有的索引类型.即使多个存储引擎支持某一索引类型,它们的实现和行为也 ...
- 极客mysql13
1:为啥删除了表的一半数8据,表文文件大小没变化?因为delete 命令其实只是把记录的位置,或者数据页标记为了"可复用",但磁盘文件的大小是不会变的.也可以认为是一种逻辑删除,所 ...
- fcntl函数用法——设置文件锁
fcntl函数.锁定文件,设置文件锁.设置获取文件锁:F_GETLK .F_SETLK .F_SETLKW文件锁结构,设置好用于fcntl函数的第三个参数.struct flock{ shor ...
- ceph集群的安装和配置教程
本篇主题: 1.怎样配置ssh免登陆访问 2.为什么搭建集群要关闭防火墙和selinux,如何关闭 3.从哪里获取ceph的安装包,怎样安装才是快速正确的 4.为什么要配置时间同步服务,怎样配置 5. ...
- linux域名解析引起登陆慢
linux域名解析引起登陆慢的问题在于,ssh去登录这个台机器的时候,本机会去通过域名解析获取登录主机的主机名,所有一旦域名解析是无效的,需要等待较长时间 解决办法一: 将域名解析指到127.0.0. ...
- JavaScript高级程序设计(第四版) -- 随笔 -- 数组(未完)
数组方法 .every() 与 .some() 传给两个个方法的函数都接收3个参数:数组元素.元素索引和数组本身. .every() -- 对于每一项都需要返回true,它才会返回true 若中途有一 ...
- Python_爬虫_urllib解析库
简介:提取网页保存到txt文件中 + 解析txt文件内容,取出内容 from urllib import request import re.json url="http://www.163 ...
- tp5 上传图片(自定义图片路径)
控制器调用 /** * [goods_addimg 图片上传] * @return [type] [description] */ public function addimg(){ if (requ ...
- 在CorelDRAW2019创建对称绘图模式
对称绘图模式是CorelDRAW 2018推出的全新功能,在2019的版本中又得到了极大的完善,通过对称绘图模式可以创建平衡.和谐.独一无二的效果,对称在大自然中随处可见,因此设计元素很可能将依靠于它 ...