题解 洛谷 P4177 【[CEOI2008]order】
进行分析后,发现最大收益可以转化为最小代价,那么我们就可以考虑用最小割来解决这道题。
先算出总收益\(sum\),总收益减去最小代价即为答案。
然后考虑如何建图,如何建立最小割的模型。
发现一个任务最终的处理只有两种情况:
① 不完成这个任务,那么我们需要支付\(val\)的代价。
② 完成这个任务,若任务中某个工序用租的方式来解决,则需要支付其租金的代价,若用买的方式来解决,则需要支付其购买费用的代价,且以后可以使用这台机器。
那么最小割的模型就可以建立了。
从源点\(S\)向每个任务连边,容量为收益\(val\),割边表示不完成这个任务。
从每个任务向其所对应的机器连边,容量为租金,割边表示租机器来完成工序。
从每个机器向汇点\(T\)连边,容量为购买的费用,割边表示购买机器。
边的数组记得开大,实现细节就看代码吧。
\(code:\)
#include<bits/stdc++.h>
#define maxn 3000010
#define inf 200000000
using namespace std;
template<typename T> inline void read(T &x)
{
x=0;char c=getchar();bool flag=false;
while(!isdigit(c)){if(c=='-')flag=true;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=getchar();}
if(flag)x=-x;
}
int n,m,s,t,sum;
struct edge
{
int to,nxt,v;
}e[maxn];
int head[maxn],edge_cnt=1;
void add(int from,int to,int val)
{
e[++edge_cnt]=(edge){to,head[from],val};
head[from]=edge_cnt;
e[++edge_cnt]=(edge){from,head[to],0};
head[to]=edge_cnt;
}
int d[maxn],cur[maxn];
bool bfs()
{
for(int i=s;i<=t;++i) cur[i]=head[i];
memset(d,0,sizeof(d));
d[s]=1;
queue<int> q;
q.push(s);
while(!q.empty())
{
int x=q.front();
q.pop();
for(int i=head[x];i;i=e[i].nxt)
{
int y=e[i].to,v=e[i].v;
if(d[y]||!v) continue;
d[y]=d[x]+1;
q.push(y);
}
}
return d[t];
}
int dfs(int x,int lim)
{
if(x==t) return lim;
int flow,res=lim;
for(int &i=cur[x];i;i=e[i].nxt)
{
int y=e[i].to,v=e[i].v;
if(d[y]!=d[x]+1||!v) continue;
if(flow=dfs(y,min(res,v)))
{
res-=flow;
e[i].v-=flow;
e[i^1].v+=flow;
if(!res) break;
}
}
return lim-res;
}
int dinic()
{
int ans=0,flow;
while(bfs())
while(flow=dfs(s,inf))
ans+=flow;
return ans;
}
int main()
{
read(n),read(m),t=n+m+1;
for(int i=1;i<=n;++i)
{
int val,k;
read(val),read(k);
sum+=val,add(s,i,val);
for(int j=1;j<=k;++j)
{
int num,cost;
read(num),read(cost);
add(i,n+num,cost);
}
}
for(int i=1;i<=m;++i)
{
int cost;
read(cost);
add(n+i,t,cost);
}
printf("%d",sum-dinic());
return 0;
}
题解 洛谷 P4177 【[CEOI2008]order】的更多相关文章
- 洛谷$P4177\ [CEOI2008]\ order$ 网络流
正解:网络流 解题报告: 传送门$QwQ$ 开始看感$jio$长得好像和太空飞行计划差不多的,,,然后仔细康康发现还有租操作,,, 按一般的套路碰到这样儿的一般就先按非特殊化的建图然后考虑怎么实现这个 ...
- P4177 [CEOI2008]order(网络流)最大权闭合子图
P4177 [CEOI2008]order 如果不能租机器,这就是最大权闭合子图的题: 给定每个点的$val$,并给出限制条件:如果取点$x$,那么必须取$y_1,y_2,y_3......$,满足$ ...
- 题解 洛谷P5018【对称二叉树】(noip2018T4)
\(noip2018\) \(T4\)题解 其实呢,我是觉得这题比\(T3\)水到不知道哪里去了 毕竟我比较菜,不大会\(dp\) 好了开始讲正事 这题其实考察的其实就是选手对D(大)F(法)S(师) ...
- 题解 洛谷 P3396 【哈希冲突】(根号分治)
根号分治 前言 本题是一道讲解根号分治思想的论文题(然鹅我并没有找到论文),正 如论文中所说,根号算法--不仅是分块,根号分治利用的思想和分块像 似却又不同,某一篇洛谷日报中说过,分块算法实质上是一种 ...
- 题解-洛谷P5410 【模板】扩展 KMP(Z 函数)
题面 洛谷P5410 [模板]扩展 KMP(Z 函数) 给定两个字符串 \(a,b\),要求出两个数组:\(b\) 的 \(z\) 函数数组 \(z\).\(b\) 与 \(a\) 的每一个后缀的 L ...
- 题解-洛谷P4229 某位歌姬的故事
题面 洛谷P4229 某位歌姬的故事 \(T\) 组测试数据.有 \(n\) 个音节,每个音节 \(h_i\in[1,A]\),还有 \(m\) 个限制 \((l_i,r_i,g_i)\) 表示 \( ...
- 题解-洛谷P4724 【模板】三维凸包
洛谷P4724 [模板]三维凸包 给出空间中 \(n\) 个点 \(p_i\),求凸包表面积. 数据范围:\(1\le n\le 2000\). 这篇题解因为是世界上最逊的人写的,所以也会有求凸包体积 ...
- 题解-洛谷P4859 已经没有什么好害怕的了
洛谷P4859 已经没有什么好害怕的了 给定 \(n\) 和 \(k\),\(n\) 个糖果能量 \(a_i\) 和 \(n\) 个药片能量 \(b_i\),每个 \(a_i\) 和 \(b_i\) ...
- 题解-洛谷P5217 贫穷
洛谷P5217 贫穷 给定长度为 \(n\) 的初始文本 \(s\),有 \(m\) 个如下操作: \(\texttt{I x c}\),在第 \(x\) 个字母后面插入一个 \(c\). \(\te ...
随机推荐
- Spring事务深入剖析--spring事务失效的原因
之前我们讲的分布式事务的调用都是在一个service中的事务方法,去调用另外一个service中的业务方法, 如果在一个sevice中存在两个分布式事务方法,在一个seivice中两个事务方法相互嵌套 ...
- 技术干货丨卷积神经网络之LeNet-5迁移实践案例
摘要:LeNet-5是Yann LeCun在1998年设计的用于手写数字识别的卷积神经网络,当年美国大多数银行就是用它来识别支票上面的手写数字的,它是早期卷积神经网络中最有代表性的实验系统之一.可以说 ...
- Python实用笔记 (22)面向对象编程——实例属性和类属性
由于Python是动态语言,根据类创建的实例可以任意绑定属性. 给实例绑定属性的方法是通过实例变量,或者通过self变量: class Student(object): def __init__(se ...
- Syntax error, insert "}" to complete MethodBody
jsp中代码在Eclipse中打开正常,导入项目导入MyEclipse后显示如下异常: Syntax error, insert "}" to complete MethodBod ...
- FTP学习
FTP服务的使用 一.LVM理论 介绍 FTP用于在Internet 上控制文件的双向传输. FTP的主要作用就是让用户连接一 个远程计算机(这些计算机上 运行着FTP服务器程序) ,并查看远程计算机 ...
- PAT A1003 Emergency 题解
PAT A1003 Emergency PAT A1003 Emergency 题目简述: 原题为英文题目,所以在这里简述一下题意: 给定n个点和m条无向路以及起点.终点 下面一行n个数,第i个数表示 ...
- DTD约束和Schema约束
DTD约束 什么是DTD? DTD(Document Type Definition),文档类型定义,用来约束XML文档.规定XML文档中元素的名称,子元素的名称及顺序,元素的属性等. DTD约束长什 ...
- 在linux上安装jdk(转载)
软件环境: 虚拟机:VMware Workstation 10 操作系统:Ubuntu-12.04-desktop-amd64 JAVA版本:jdk-7u55-linux-x64 软件下载地址: JD ...
- Java贪吃蛇小游戏
贪吃蛇 思路 首先构思游戏布局,计算合理的坐标系. 绘制静态数据(广告.初始小蛇.提示信息.棋盘) 添加键盘监听事件,改变游戏状态以及小蛇运动方向 添加定时器,让小蛇在一段时间内移动一定的距离 随机产 ...
- MySQL调优 优化需要考虑哪些方面
MySQL调优 优化需要考虑哪些方面 优化目标与方向定位 总体目标:使得响应时间更快,吞吐量更大. (throughout --- 吞吐量:单位时间内处理事务的数量) 如何找到需要优化的地方 使用 ...