进行分析后,发现最大收益可以转化为最小代价,那么我们就可以考虑用最小割来解决这道题。

先算出总收益\(sum\),总收益减去最小代价即为答案。

然后考虑如何建图,如何建立最小割的模型。

发现一个任务最终的处理只有两种情况:

① 不完成这个任务,那么我们需要支付\(val\)的代价。

② 完成这个任务,若任务中某个工序用租的方式来解决,则需要支付其租金的代价,若用买的方式来解决,则需要支付其购买费用的代价,且以后可以使用这台机器。

那么最小割的模型就可以建立了。

从源点\(S\)向每个任务连边,容量为收益\(val\),割边表示不完成这个任务。

从每个任务向其所对应的机器连边,容量为租金,割边表示租机器来完成工序。

从每个机器向汇点\(T\)连边,容量为购买的费用,割边表示购买机器。

边的数组记得开大,实现细节就看代码吧。

\(code:\)

#include<bits/stdc++.h>
#define maxn 3000010
#define inf 200000000
using namespace std;
template<typename T> inline void read(T &x)
{
x=0;char c=getchar();bool flag=false;
while(!isdigit(c)){if(c=='-')flag=true;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=getchar();}
if(flag)x=-x;
}
int n,m,s,t,sum;
struct edge
{
int to,nxt,v;
}e[maxn];
int head[maxn],edge_cnt=1;
void add(int from,int to,int val)
{
e[++edge_cnt]=(edge){to,head[from],val};
head[from]=edge_cnt;
e[++edge_cnt]=(edge){from,head[to],0};
head[to]=edge_cnt;
}
int d[maxn],cur[maxn];
bool bfs()
{
for(int i=s;i<=t;++i) cur[i]=head[i];
memset(d,0,sizeof(d));
d[s]=1;
queue<int> q;
q.push(s);
while(!q.empty())
{
int x=q.front();
q.pop();
for(int i=head[x];i;i=e[i].nxt)
{
int y=e[i].to,v=e[i].v;
if(d[y]||!v) continue;
d[y]=d[x]+1;
q.push(y);
}
}
return d[t];
}
int dfs(int x,int lim)
{
if(x==t) return lim;
int flow,res=lim;
for(int &i=cur[x];i;i=e[i].nxt)
{
int y=e[i].to,v=e[i].v;
if(d[y]!=d[x]+1||!v) continue;
if(flow=dfs(y,min(res,v)))
{
res-=flow;
e[i].v-=flow;
e[i^1].v+=flow;
if(!res) break;
}
}
return lim-res;
}
int dinic()
{
int ans=0,flow;
while(bfs())
while(flow=dfs(s,inf))
ans+=flow;
return ans;
}
int main()
{
read(n),read(m),t=n+m+1;
for(int i=1;i<=n;++i)
{
int val,k;
read(val),read(k);
sum+=val,add(s,i,val);
for(int j=1;j<=k;++j)
{
int num,cost;
read(num),read(cost);
add(i,n+num,cost);
}
}
for(int i=1;i<=m;++i)
{
int cost;
read(cost);
add(n+i,t,cost);
}
printf("%d",sum-dinic());
return 0;
}

题解 洛谷 P4177 【[CEOI2008]order】的更多相关文章

  1. 洛谷$P4177\ [CEOI2008]\ order$ 网络流

    正解:网络流 解题报告: 传送门$QwQ$ 开始看感$jio$长得好像和太空飞行计划差不多的,,,然后仔细康康发现还有租操作,,, 按一般的套路碰到这样儿的一般就先按非特殊化的建图然后考虑怎么实现这个 ...

  2. P4177 [CEOI2008]order(网络流)最大权闭合子图

    P4177 [CEOI2008]order 如果不能租机器,这就是最大权闭合子图的题: 给定每个点的$val$,并给出限制条件:如果取点$x$,那么必须取$y_1,y_2,y_3......$,满足$ ...

  3. 题解 洛谷P5018【对称二叉树】(noip2018T4)

    \(noip2018\) \(T4\)题解 其实呢,我是觉得这题比\(T3\)水到不知道哪里去了 毕竟我比较菜,不大会\(dp\) 好了开始讲正事 这题其实考察的其实就是选手对D(大)F(法)S(师) ...

  4. 题解 洛谷 P3396 【哈希冲突】(根号分治)

    根号分治 前言 本题是一道讲解根号分治思想的论文题(然鹅我并没有找到论文),正 如论文中所说,根号算法--不仅是分块,根号分治利用的思想和分块像 似却又不同,某一篇洛谷日报中说过,分块算法实质上是一种 ...

  5. 题解-洛谷P5410 【模板】扩展 KMP(Z 函数)

    题面 洛谷P5410 [模板]扩展 KMP(Z 函数) 给定两个字符串 \(a,b\),要求出两个数组:\(b\) 的 \(z\) 函数数组 \(z\).\(b\) 与 \(a\) 的每一个后缀的 L ...

  6. 题解-洛谷P4229 某位歌姬的故事

    题面 洛谷P4229 某位歌姬的故事 \(T\) 组测试数据.有 \(n\) 个音节,每个音节 \(h_i\in[1,A]\),还有 \(m\) 个限制 \((l_i,r_i,g_i)\) 表示 \( ...

  7. 题解-洛谷P4724 【模板】三维凸包

    洛谷P4724 [模板]三维凸包 给出空间中 \(n\) 个点 \(p_i\),求凸包表面积. 数据范围:\(1\le n\le 2000\). 这篇题解因为是世界上最逊的人写的,所以也会有求凸包体积 ...

  8. 题解-洛谷P4859 已经没有什么好害怕的了

    洛谷P4859 已经没有什么好害怕的了 给定 \(n\) 和 \(k\),\(n\) 个糖果能量 \(a_i\) 和 \(n\) 个药片能量 \(b_i\),每个 \(a_i\) 和 \(b_i\) ...

  9. 题解-洛谷P5217 贫穷

    洛谷P5217 贫穷 给定长度为 \(n\) 的初始文本 \(s\),有 \(m\) 个如下操作: \(\texttt{I x c}\),在第 \(x\) 个字母后面插入一个 \(c\). \(\te ...

随机推荐

  1. 面试题64:求 1 + 2 + ... + n

    这道题目条件限制严格,需要发散思维...但是作者是以 C++ 语言特性来做讲解的,对于 Java 狗只能说稍微有点参考意义吧!

  2. Vmware虚拟机克隆以及关闭防火墙

    vmware虚拟机克隆之后,一定要修改克隆机器的mac地址和IP上网地址,不能和之前的机器一样

  3. Halcon斑点分析BlobAnalysis解析

    斑点分析的算法非常简单:在图像中,相关对象的像素(也称为前景)通过其灰度值来识别.例如,图中示例显示了液体中的组织颗粒.这些粒子是明亮的,液体(背景)是暗的.通过选择明亮的像素(阈值),可以很容易检测 ...

  4. MongoDB快速入门教程 (1)

    1.MongoDB初识 1.1.MongoDB是什么? MongoDB是一个基于分布式文件存储的数据库.由C++语言编写.旨在为WEB应用提供可扩展的高性能数据存储解决方案. MongoDB是一个介于 ...

  5. mybatis源码配置文件解析之五:解析mappers标签流程图

    前面几篇博客分析了mybatis解析mappers标签的过程,主要分为解析package和mapper子标签.补充一张解析的总体过程流程图,画的不好,多多谅解,感谢.

  6. 断路器Hystrix(Feign)

    上一篇中我们讲了 断路器Hystrix(Ribbon) 本章讲解Feign+Hystrix已经Request请求传递,各种奇淫技巧…. - Hystrix Hystrix支持回退概念:当 断路器 打开 ...

  7. SpringCloud 断路器之Hystrix

    Hystrix-断路器 在分布式环境中,许多服务依赖项中的一些必然会失败.Hystrix是一个库,通过添加延迟容忍和容错逻辑,帮助你控制这些分布式服务之间的交互.Hystrix通过隔离服务之间的访问点 ...

  8. videojs兼容ie8

    从网上找到很多这个videojs兼容ie8的解决方案,一个一个的试,最后发现没有一个是靠谱的.我好无奈啊…… 先看图(ie上访问必须是线上地址) 看代码: <!DOCTYPE html> ...

  9. Django---进阶13

    目录 数据库表创建及同步 注册功能 登陆功能 bbs是一个前后端不分离的全栈项目,前端和后端都需要我们自己一步步的完成 表创建及同步 注册功能 forms组件 用户头像前端实时展示 ajax 登陆功能 ...

  10. python入门008

    目录 一.for循环 作用:for循环是因为在循环取值(即遍历值)时for循环比while循环的使用更为简洁 1.for循环语法: 2.应用案例: 注意:break 与 continue也可以用于fo ...