站点数据绘制等值线需要首先将站点数据插值为格点数据,MeteoInfo中提供了反距离权法(IDW)和cressman两个方法,其中IDW方法可以有插值半径的选项。这里示例读取一个MICAPS第一类数据(地面全要素观测),获取6小时累积降水数据(Precipitation6h),然后用站点数据的griddata函数将站点数据插值为格点数据,再利用contourfm函数创建等值线填色图层(等值线间隔和颜色可以自定义)。

脚本程序(经纬度投影):

#Set data folders
basedir = 'D:/MyProgram/Distribution/java/MeteoInfo/MeteoInfo'
datadir = os.path.join(basedir, 'sample/MICAPS')
mapdir = os.path.join(basedir, 'map')
#Read shape files
bou2_layer = shaperead(os.path.join(mapdir, 'bou2_4p.shp'))
bou1_layer = shaperead(os.path.join(mapdir, 'bou1_4l.shp'))
china_layer = shaperead(os.path.join(mapdir, 'china.shp'))
city_layer = shaperead(os.path.join(mapdir, 'res1_4m.shp'))
#Read station data
f = addfile_micaps(os.path.join(datadir, '10101414.000'))
pr = f.stationdata('Precipitation6h')
#griddata function - interpolate
x = arange(75, 135, 0.5)
y = arange(18, 55, 0.5)
prg = pr.griddata((x, y), method='idw', radius=3)
#Plot
axesm()
geoshow(bou2_layer, edgecolor='lightgray')
geoshow(bou1_layer, facecolor=(0,0,255))
geoshow(city_layer, facecolor='r', size=4, labelfield='NAME', fontname=u'楷体', fontsize=16, yoffset=15)
geoshow(china_layer, visible=False)
levs = [0.1, 1, 2, 5, 10, 20, 25, 50, 100]
cols = [(255,255,255),(170,240,255),(120,230,240),(200,220,50),(240,220,20),(255,120,10),(255,90,10), \
(240,40,0),(180,10,0),(120,10,0)]
layer = contourfm(prg, levs, colors=cols)
masklayer(china_layer, [layer])
colorbar(layer)
xlim(72, 136)
ylim(16, 55)
text(95, 52, u'全国降水量实况图', fontname=u'黑体', fontsize=16)
text(95, 50, u'(2010-10-14 08:00 至 2010-10-14 14:00)', fontname=u'黑体', fontsize=14)
#Add south China Sea
sc_layer = bou1_layer.clone()
axesm(position=[0.14,0.18,0.15,0.2], axison=False)
geoshow(sc_layer, facecolor=(0,0,255))
xlim(106, 123)
ylim(2, 23)

脚本程序(Lambert投影):

#Set data folders
basedir = 'D:/MyProgram/Distribution/java/MeteoInfo/MeteoInfo'
datadir = os.path.join(basedir, 'sample/MICAPS')
mapdir = os.path.join(basedir, 'map')
#Read shape files
bou2_layer = shaperead(os.path.join(mapdir, 'bou2_4p.shp'))
bou1_layer = shaperead(os.path.join(mapdir, 'bou1_4l.shp'))
china_layer = shaperead(os.path.join(mapdir, 'china.shp'))
city_layer = shaperead(os.path.join(mapdir, 'res1_4m.shp'))
#Read station data
f = addfile_micaps(os.path.join(datadir, '10101414.000'))
pr = f.stationdata('Precipitation6h')
#griddata function - interpolate
x = arange(75, 135, 0.5)
y = arange(18, 55, 0.5)
prg = pr.griddata((x, y), method='idw', radius=3)
#Plot
proj = projinfo(proj='lcc', lon_0=105, lat_1=25, lat_2=47)
axesm(projinfo=proj, position=[0, 0, 0.9, 1], axison=False, gridlabel=False, frameon=False)
geoshow(bou2_layer, edgecolor='lightgray')
geoshow(bou1_layer, facecolor=(0,0,255))
geoshow(city_layer, facecolor='r', size=4, labelfield='NAME', fontname=u'楷体', fontsize=16, yoffset=15)
geoshow(china_layer, visible=False)
levs = [0.1, 1, 2, 5, 10, 20, 25, 50, 100]
cols = [(255,255,255),(170,240,255),(120,230,240),(200,220,50),(240,220,20),(255,120,10),(255,90,10), \
(240,40,0),(180,10,0),(120,10,0)]
layer = contourfm(prg, levs, colors=cols)
masklayer(china_layer, [layer])
colorbar(layer, shrink=0.5, aspect=15)
axism([78, 130, 14, 53])
text(95, 53, u'全国降水量实况图', fontname=u'黑体', fontsize=18)
text(95, 51, u'(2010-10-14 08:00 至 2010-10-14 14:00)', fontname=u'黑体', fontsize=16)
#Add south China Sea
sc_layer = bou1_layer.clone()
axesm(position=[0.1,0.05,0.15,0.2], axison=False)
geoshow(sc_layer, facecolor=(0,0,255))
xlim(106, 123)
ylim(2, 23)

运行结果:

MeteoInfoLab脚本示例:站点数据绘制等值线的更多相关文章

  1. MeteoInfoLab脚本示例:数据投影-FLEXPART

    FLEXPART是一个类似HYSPLIT的扩散模式,它输出的netcdf文件参照了WRF,可惜全局属性没有写全,比如只有一个投影名称(例如Lambert),没有相关的投影参数:中央经度,标准纬度等等. ...

  2. MeteoInfoLab脚本示例:读取文本文件绘制散度图

    MeteoInfoLab中读取文本文件数据的函数是asciiread,获取文本文件行.列数的函数是numasciirow和numasciicol,和NCL中函数名一致,但都是小写字母.本例中的示例数据 ...

  3. MeteoInfoLab脚本示例:站点填图

    打开包含站点填图的站点数据文件(比如micaps 1)之后,用文件对象的smodeldata函数获取StationModel数据对象,然后用stationmodel函数绘制站点填图图层.脚本程序: # ...

  4. MeteoInfoLab脚本示例:AMSR-E卫星数据投影

    AMSR-E(http://nsidc.org/data/amsre/index.html)数据中的Land3数据是HDF-EOS4格式,投影是Cylindrical_Equal_Area.这里示例读 ...

  5. MeteoInfoLab脚本示例:FY-3C全球火点HDF数据

    FY-3C全球火点HDF数据包含一个FIRES二维变量,第一维是火点数,第二维是一些属性,其中第3.4列分别是火点的纬度和经度.下面的脚本示例读出所有火点经纬度并绘图.脚本程序: #Add data ...

  6. MeteoInfoLab脚本示例:闪电位置图

    这个脚本示例读取文本格式的闪电数据,读出每条闪电记录的经纬度和强度,在地图上绘制出每个闪电的位置,并用符号和颜色区分强度正负.数据格式如下:0 2009-06-06 00:01:16.6195722 ...

  7. MeteoInfoLab脚本示例:计算垂直螺旋度

    尝试编写MeteoInfoLab脚本计算垂直螺旋度,结果未经验证. 脚本程序: print 'Open data files...' f_uwnd = addfile('D:/Temp/nc/uwnd ...

  8. MeteoInfoLab脚本示例:站点数据散点图

    这里演示从micaps第一类数据(地面全要素观测)中读取一个变量(用DimDataFile类的stationdata方法),然后maskout掉中国区域之外的数据,利用scatterm函数绘制散点图. ...

  9. MeteoInfoLab脚本示例:AVHRR HDF数据

    这里演示读取和绘制AVHRR hdf格式数据,以sst(海表面温度)为例. 脚本程序: #Add data file f = addfile('D:/Temp/hdf/2006001-2006005. ...

随机推荐

  1. Asp.Net中的三种分页方式总结

    本人ASP.net初学,网上找了一些分页的资料,看到这篇文章,没看到作者在名字,我转了你的文章,只为我可以用的时候方便查看,2010的文章了,不知道这技术是否过期. 以下才是正文 通常分页有3种方法, ...

  2. Spring 框架(持续完善中)

    目录标题 一.Spring 框架 Spring 是什么? Spring Framework 核心概念 了解Spring 框架的架构图 二.Spring Framework 之 IOC 开发的步骤流程 ...

  3. Kubernetes-5:搭建企业级私有仓库Harbor

    搭建企业级私有仓库Harbor 安装需求 python版本 >= 2.7 Docker引擎版本 >= 1.10 docker-compose版本 >= 1.6.0 安装环境 一.Py ...

  4. (python)生产者消费者模型

    生产者消费者模型当中有两大类重要的角色,一个是生产者(负责造数据的任务),另一个是消费者(接收造出来的数据进行进一步的操作). 为什么要使用生产者消费者模型? 在并发编程中,如果生产者处理速度很快,而 ...

  5. SpringMVC-08-整合SSM之CRUD

    查询书籍功能 完善Controller:BookController @Controller @RequestMapping("/book") public class BookC ...

  6. python3 while循环

    python不支持n++这样格式,因为python中变量不像c那样事先定义好变量类型,在内存中开辟指定的空间,然后赋值. python中以字符串为例,事先在内存划分空间来存放字符串,然后用变量名来指向 ...

  7. 第15课 - make的隐式规则(上)

    第15课 - make的隐式规则(上) 1. 问题 如果把同一个目标的命令拆分的写到不同地方,会发生什么? 执行make all 这个实验表明了:如果同一个目标的命令拆分的写到不同地方,那么 make ...

  8. Linux实战(9):Docker一键搭建kms服务

    server端 docker pull luodaoyi/kms-server docker run -itd -p 1688:1688 --name kms luodaoyi/kms-server ...

  9. GO练习题

    package main import( "fmt" ) func list(n int) { for i := 0; i <= n; i++ { fmt.Printf(&q ...

  10. jstl中ftm标签用法

    <fmt:formatDate value="${dateTime}" pattern="yyyy/MM/dd HH:mm:ss"/>