题意:区间加,区间乘,单点询问

思路:假设一个点为a,那么他可以表示为m * a + sum,所以区间加就变为m * a + sum + sum2,区间乘变为m * m2 * a + sum * m2。左右两边的块要先puhs down。

代码:

#include<cmath>
#include<set>
#include<map>
#include<queue>
#include<cstdio>
#include<vector>
#include<cstring>
#include <iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxn = 1e5 + 10;
const int M = maxn * 30;
const ull seed = 131;
const int INF = 0x3f3f3f3f;
const int MOD = 1e4 + 7;
struct Block{
int l, r;
}b[maxn];
int a[maxn], sum[maxn], mult[maxn], belong[maxn];
int n, block;
void down(int bl){
for(int i = b[bl].l; i <= b[bl].r; i++){
a[i] = (a[i] * mult[bl] + sum[bl]) % MOD;
}
mult[bl] = 1;
sum[bl] = 0;
}
void add(int l, int r, int c){
int bl = belong[l], br = belong[r];
if(bl == br){
down(bl);
for(int i = l; i <= r; i++){
a[i] = (a[i] + c) % MOD;
}
}
else{
down(bl);
for(int i = l; i <= b[bl].r; i++){
a[i] = (a[i] + c) % MOD;
}
for(int i = bl + 1; i <= br - 1; i++){
sum[i] = (sum[i] + c) % MOD;
}
down(br);
for(int i = b[br].l; i <= r; i++){
a[i] = (a[i] + c) % MOD;
}
}
}
void mul(int l, int r, int c){
int bl = belong[l], br = belong[r];
if(bl == br){
down(bl);
for(int i = l; i <= r; i++){
a[i] = (a[i] * c) % MOD;
}
}
else{
down(bl);
for(int i = l; i <= b[bl].r; i++){
a[i] = (a[i] * c) % MOD;
}
for(int i = bl + 1; i <= br - 1; i++){
mult[i] = (mult[i] * c) % MOD;
sum[i] = (sum[i] * c) % MOD;
}
down(br);
for(int i = b[br].l; i <= r; i++){
a[i] = (a[i] * c) % MOD;
}
}
}
int main(){
scanf("%d", &n);
for(int i = 1; i <= n; i++){
scanf("%d", &a[i]);
}
block = sqrt(n);
for(int i = 1; i <= n; i++){
belong[i] = (i - 1) / block + 1;
}
for(int i = 1; i <= belong[n]; i++){
b[i].l = (i - 1) * block + 1;
b[i].r = min(n, b[i].l + block - 1);
sum[i] = 0, mult[i] = 1;
}
for(int i = 1; i <= n; i++){
int o, l, r;
int c;
scanf("%d%d%d%d", &o, &l, &r, &c);
if(o == 0){
add(l, r, c);
}
else if(o == 1){
mul(l, r, c);
}
else{
int ans = (a[r] * mult[belong[r]] % MOD + sum[belong[r]]) % MOD;
printf("%d\n", ans);
}
}
return 0;
}

LOJ6283 数列分块入门 7 (分块 区间加/乘)题解的更多相关文章

  1. LOJ #6283. 数列分块入门 7-分块(区间乘法、区间加法、单点查询)

    #6283. 数列分块入门 7 内存限制:256 MiB时间限制:500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计测试数据讨论 2   题目描述 给出 ...

  2. LOJ #6280. 数列分块入门 4-分块(区间加法、区间求和)

    #6280. 数列分块入门 4 内存限制:256 MiB时间限制:500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计测试数据讨论   题目描述 给出一个 ...

  3. LOJ #6279. 数列分块入门 3-分块(区间加法、查询区间内小于某个值x的前驱(比其小的最大元素))

    #6279. 数列分块入门 3 内存限制:256 MiB时间限制:1500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计测试数据讨论 3   题目描述 给 ...

  4. LOJ #6278. 数列分块入门 2-分块(区间加法、查询区间内小于某个值x的元素个数)

    #6278. 数列分块入门 2 内存限制:256 MiB时间限制:500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计测试数据讨论 6   题目描述 给出 ...

  5. LOJ #6277. 数列分块入门 1-分块(区间加法、单点查询)

    #6277. 数列分块入门 1 内存限制:256 MiB时间限制:100 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计测试数据讨论 2   题目描述 给出 ...

  6. LOJ #6281. 数列分块入门 5-分块(区间开方、区间求和)

    #6281. 数列分块入门 5 内存限制:256 MiB时间限制:500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计测试数据讨论 5   题目描述 给出 ...

  7. LibreOJ 6279 数列分块入门 3(分块+排序)

    题解:自然是先分一波块,把同一个块中的所有数字压到一个vector中,将每一个vector进行排序.然后对于每一次区间加,不完整的块加好后暴力重构,完整的块直接修改标记.查询时不完整的块暴力找最接近x ...

  8. LibreOJ 6280 数列分块入门 4(分块区间加区间求和)

    题解:分块的区间求和比起线段树来说实在是太好写了(当然,复杂度也高)但这也是没办法的事情嘛.总之50000的数据跑了75ms左右还是挺优越的. 比起单点询问来说,区间询问和也没有复杂多少,多开一个su ...

  9. loj 数列分块入门 6 9(区间众数)

    6 题意 给出一个长为\(n\)的数列,以及\(n\)个操作,操作涉及单点插入,单点询问,数据随机生成. 题解 参考:http://hzwer.com/8053.html 每个块内用一个\(vecto ...

  10. LibreOJ 6281 数列分块入门 5(分块区间开方区间求和)

    题解:区间开方emmm,这马上让我想起了当时写线段树的时候,很显然,对于一个在2^31次方以内的数,开方7-8次就差不多变成一了,所以我们对于每次开方,如果块中的所有数都为一了,那么开方也没有必要了. ...

随机推荐

  1. 卷积神经网络学习笔记——SENet

    完整代码及其数据,请移步小编的GitHub地址 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/DeepLearningNote 这里结合网络的资料和SE ...

  2. pyinstaller打包shotgun有关的程序

    By 鬼猫猫 http://www.cnblogs.com/muyr/ 背景 使用pyinstaller打包跟shotgun有关的程序后,在自己电脑上运行都OK,但是编译好的exe在其他人的电脑上运行 ...

  3. C#+Layui开发后台管理系统

    ​我是笑林新记,分享一下我一套C#开发的后台管理系统,希望对大家有帮助!欢迎关注微信公众号:笑林新记   后台开发语言:C# 前端框架:layui   前天用毛笔笔画制作了一个毛笔字效果的Logo,主 ...

  4. IDE 阅读代码时候如何防止误触

    在 JetBrains 系列的编辑器中,点击右下角小锁图标,就可以只读防止误修改. Visual Studio 下安装 CodeMaid 插件 http://www.codemaid.net/ htt ...

  5. Redis主从、哨兵模式的搭建

    壹.Redis主从分离 准备三个redis配置文件(redis.conf),分别修改为redis6380.conf.redis6381.conf.redis6382.conf 一.配置Master 1 ...

  6. LOJ2632

    题目描述 译自 BalticOI 2011 Day1 T3「Switch the Lamp On」有一种正方形的电路元件,在它的两组相对顶点中,有一组会用导线连接起来,另一组则不会.有  个这样的元件 ...

  7. docker基本使用-nginx

    在docker环境中部署使用nginx 1,安装nginx docker pull nginx 2,随便启动一下nginx,测试是否安装成功 a,启动nginx sudo docker run --n ...

  8. Docker+Prometheus+Alertmanager+Webhook钉钉告警

    Docker+Prometheus+Alertmanager+Webhook钉钉告警 1.环境部署 1.1 二进制部署 1.2 docker部署 1.2.1 webhook 1.2.2 alertma ...

  9. html输入框输入显示剩余字数

     效果图 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3 ...

  10. Kubernetes -- secret (敏感数据管理)

    https://www.kubernetes.org.cn/secret secret 主要解决密码.token.密钥等敏感数据的配置问题,而不需要把这些敏感数据暴露到镜像或者Pod Spec中 Se ...