题目描述

聪聪和可可是兄弟俩,他们俩经常为了一些琐事打起来,例如家中只剩下最后一根冰棍而两人都想吃、两个人都想玩儿电脑(可是他们家只有一台电脑)……遇到这种问题,一般情况下石头剪刀布就好了,可是他们已经玩儿腻了这种低智商的游戏。

他们的爸爸快被他们的争吵烦死了,所以他发明了一个新游戏:由爸爸在纸上画n个“点”,并用n-1条“边”把这n个“点”恰好连通(其实这就是一棵树)。并且每条“边”上都有一个数。接下来由聪聪和可可分别随即选一个点(当然他们选点时是看不到这棵树的),如果两个点之间所有边上数的和加起来恰好是3的倍数,则判聪聪赢,否则可可赢。

聪聪非常爱思考问题,在每次游戏后都会仔细研究这棵树,希望知道对于这张图自己的获胜概率是多少。现请你帮忙求出这个值以验证聪聪的答案是否正确。

输入输出格式

输入格式:

 

输入的第1行包含1个正整数n。后面n-1行,每行3个整数x、y、w,表示x号点和y号点之间有一条边,上面的数是w。

 

输出格式:

 

以即约分数形式输出这个概率(即“a/b”的形式,其中a和b必须互质。如果概率为1,输出“1/1”)。

 

输入输出样例

输入样例#1: 复制

5
1 2 1
1 3 2
1 4 1
2 5 3
输出样例#1: 复制

13/25

说明

【样例说明】

13组点对分别是(1,1) (2,2) (2,3) (2,5) (3,2) (3,3) (3,4) (3,5) (4,3) (4,4) (5,2) (5,3) (5,5)。

【数据规模】

对于100%的数据,n<=20000。

题解:仍然不讲点分只讲暴力,距离为三的点对该怎么获得?显然对于某点他到两个儿子的路径%3的值为1和2,统计总方案数为cnt1*cnt2*2,其次距离%3为0的方案数为cnt0*cnt0

接着需要容斥去一下重

代码如下:

#include<map>
#include<set>
#include<queue>
#include<cmath>
#include<cstdio>
#include<string>
#include<vector>
#include<cstring>
#include<iostream>
#include<algorithm>
#define mp make_pair
#define pii pair<int,int>
using namespace std; vector<pii> g[];
int n,size[],vis[],f[],cnt[],ans; void get_size(int now,int fa)
{
size[now]=;
f[now]=fa;
for(int i=;i<g[now].size();i++)
{
if(g[now][i].first==fa||vis[g[now][i].first]) continue;
get_size(g[now][i].first,now);
size[now]+=size[g[now][i].first];
}
} int get_zx(int now,int fa)
{
if(size[now]==) return now;
int son,maxson=-;
for(int i=;i<g[now].size();i++)
{
if(g[now][i].first==fa||vis[g[now][i].first]) continue;
if(maxson<size[g[now][i].first])
{
son=g[now][i].first;
maxson=size[g[now][i].first];
}
}
int zx=get_zx(son,now);
while(size[zx]<(size[now]-size[zx])*) zx=f[zx];
return zx;
} void get(int now,int fa,int dis)
{
cnt[dis%]++;
for(int i=;i<g[now].size();i++)
{
if(g[now][i].first==fa||vis[g[now][i].first])continue;
get(g[now][i].first,now,dis+g[now][i].second);
}
} int calc(int now,int dis)
{
cnt[]=cnt[]=cnt[]=;
get(now,,dis);
int tmp=cnt[]*cnt[]+cnt[]*cnt[]*;
return tmp;
} int solve(int now)
{
ans+=calc(now,);
vis[now]=;
for(int i=;i<g[now].size();i++)
{
if(vis[g[now][i].first]) continue;
ans-=calc(g[now][i].first,g[now][i].second);
get_size(g[now][i].first,);
int zx=get_zx(g[now][i].first,);
solve(zx);
}
} int main()
{
scanf("%d",&n);
for(int i=;i<n;i++)
{
int from,to,cost;
scanf("%d%d%d",&from,&to,&cost);
g[from].push_back(mp(to,cost));
g[to].push_back(mp(from,cost));
}
solve();
int anns=ans;
int div=n*n;
int gg=__gcd(anns,div);
printf("%d/%d\n",anns/gg,div/gg);
}

洛谷P2634 [国家集训队]聪聪可可 (点分治)的更多相关文章

  1. 模板—点分治A(容斥)(洛谷P2634 [国家集训队]聪聪可可)

    洛谷P2634 [国家集训队]聪聪可可 静态点分治 一开始还以为要把分治树建出来……• 树的结构不发生改变,点权边权都不变,那么我们利用刚刚的思路,有两种具体的分治方法.• A:朴素做法,直接找重心, ...

  2. 洛谷 P2634 [国家集训队]聪聪可可 解题报告

    P2634 [国家集训队]聪聪可可 题目描述 聪聪和可可是兄弟俩,他们俩经常为了一些琐事打起来,例如家中只剩下最后一根冰棍而两人都想吃.两个人都想玩儿电脑(可是他们家只有一台电脑)--遇到这种问题,一 ...

  3. 洛谷 P2634 [国家集训队]聪聪可可-树分治(点分治,容斥版) +读入挂+手动O2优化吸点氧才过。。。-树上路径为3的倍数的路径数量

    P2634 [国家集训队]聪聪可可 题目描述 聪聪和可可是兄弟俩,他们俩经常为了一些琐事打起来,例如家中只剩下最后一根冰棍而两人都想吃.两个人都想玩儿电脑(可是他们家只有一台电脑)……遇到这种问题,一 ...

  4. 洛谷-P2634 [国家集训队]聪聪可可 点分治

    Description 聪聪和可可是兄弟俩,他们俩经常为了一些琐事打起来,例如家中只剩下最后一根冰棍而两人都想吃.两个人都想玩儿电脑(可是他们家只有一台电脑)……遇到这种问题,一般情况下石头剪刀布就好 ...

  5. [洛谷P2634][国家集训队]聪聪可可

    题目大意:给你一棵树,随机选两个点,求它们之间路径长度是$3$的倍数的概率 题解:点分治,求出当前状态的重心,然后求出经过重心的答案,接着分治每棵子树.注意考虑重复计算的情况 卡点:无 C++ Cod ...

  6. 洛谷 P2634 [国家集训队]聪聪可可

    点分板子2333 注释都是错过的地方 #include<cstdio> #include<algorithm> using namespace std; typedef lon ...

  7. 洛谷P2634 [国家集训队]聪聪可可(点分治)

    传送门 题意: 给出一颗树,每条边都有一定的边权. 先问点之间路径和为\(3\)的倍数的点对有多少. 思路: 点分治模板题. 可以将问题转化为经过一个点\(t\)的路径和不经过点\(t\)的路径两种情 ...

  8. 洛谷P2634 [国家集训队]聪聪可可 点分治模板

    题意 在一棵树上任意选两个点,求它们距离模3为0的概率. 分析 树分治模板 Code #include<bits/stdc++.h> #define fi first #define se ...

  9. 洛谷 P2634 BZOJ 2152 【模板】点分治(聪聪可可)

    题目描述 聪聪和可可是兄弟俩,他们俩经常为了一些琐事打起来,例如家中只剩下最后一根冰棍而两人都想吃.两个人都想玩儿电脑(可是他们家只有一台电脑)……遇到这种问题,一般情况下石头剪刀布就好了,可是他们已 ...

随机推荐

  1. 前端调试利器---nproxy

    前言:习惯了在windows环境中使用Fiddler的童鞋们,是不是感觉它的网络重定向功能很酷,Fiddler能按照你设置的规制捕获网络请求,再指向本地文件,如拦截你的js文件到本地,就能很快的调试线 ...

  2. Java 单例模式详解(转)

    概念: java中单例模式是一种常见的设计模式,单例模式分三种:懒汉式单例.饿汉式单例.登记式单例三种. 单例模式有一下特点: 1.单例类只能有一个实例. 2.单例类必须自己自己创建自己的唯一实例. ...

  3. 获取当前UnixTime的零点时间戳

    最近有个需求,开屏广告每天只出一次. 思路为如果出了开屏广告,则记录当前时间,下次来的时候,读取当前时间和上一次出开屏的时间. 算一下是不是在同一天即可. 我们的第一个想法是将上次开屏时间和当前时间归 ...

  4. 使用cloudrea manager管理已有的cdh集群(转)

    转自:http://blog.51cto.com/teacheryan/1912116 本文介绍如何搭建cloudera manager去接入已有hadoop组件(cdh). 一.下载必备文件: 1. ...

  5. java-tip-关于StringBuilder的使用

    当我们需要拼接字符串时,通常会使用StringBuilder,这里简单分析下StringBuilder的内部结构. StringBuilder内部是一个char数组,当调用append方法连接字符串时 ...

  6. SpringBoot01 InteliJ IDEA安装、Maven配置、创建SpringBoot项目、yml属性配置、多环境配置、自定义properties配置

    1 IntelliJ IDEA 安装 下载地址:点击前往 注意:需要下载专业版本的,注册码在网上随便搜一个就行啦 2 MAVEN工具的安装 2.1 获取安装包 下载地址:点击前往 2.2 安装过程 到 ...

  7. [C++] decltype(auto) C++ 11 feature

    1 //C++ 11 feature template <class T1, class T2> auto getMultiply(T1 data1, T2 data2) -> de ...

  8. xargs在linux中的使用详解-乾颐堂

    xargs在linux中是个很有用的命令,它经常和其他命令组合起来使用,非常的灵活. xargs是给命令传递参数的一个过滤器,也是组合多个命令的一个工具.它把一个数据流分割为一些足够小的块,以方便过滤 ...

  9. Oracle 用户

    1.关于创建用户; 2.用户配置文件; 3.创建用户; 4.更改用户; 5.删除用户; 1.关于创建用户: 1.1 用户名:创建数据库用户必须具有 Create user 系统权限,必须指定用户名和密 ...

  10. 反射机制:获取class的方法