CF438 The Child and Sequence
题意:
给定一个长度为n的非负整数序列a,你需要支持以下操作:
1)给定l,r,输出a[l] + a[l+1] + ... + a[r]
2)给定l,r,x, 将a[l]、a[l+1]、....、a[r]对x取模
3)给定k,y,将a[k]修改为y
n, m <= 100000,a[i], x, y <= 109
对于操作(1)(3)非常简单,线段树基本操作
问题是操作(2),显然的是我们不能对区间和取模,这样就很难受
但是我们可以想到,一个数若是比模数小,就不需要取模,而一个数w有效取模次数最多为log(w)
同时单个数被有效取模的一次只会花费O(logn)
因此每次修改至多使复杂度增加O(lognlogw)
这样我们对于区间l, r暴力对每个能取模的数取模即可
最后时间复杂度为O(mlognlogw)
#include<bits/stdc++.h>
#define ll long long
#define uint unsigned int
#define ull unsigned long long
using namespace std;
const int maxn = ;
struct shiki {
ll maxx, sum;
}tree[maxn << ];
int n, m;
ll a[maxn]; inline ll read() {
ll x = , y = ;
char ch = getchar();
while(!isdigit(ch)) {
if(ch == '-') y = -;
ch = getchar();
}
while(isdigit(ch)) {
x = (x << ) + (x << ) + ch - '';
ch = getchar();
}
return x * y;
} inline void maintain(int pos) {
int ls = pos << , rs = pos << | ;
tree[pos].maxx = max(tree[ls].maxx, tree[rs].maxx);
tree[pos].sum = tree[ls].sum + tree[rs].sum;
} void build(int pos, int l, int r) {
if(l == r) {
tree[pos].maxx = tree[pos].sum = a[l];
return;
}
int mid = l + r >> ;
build(pos << , l, mid);
build(pos << | , mid + , r);
maintain(pos);
} void get_mod(int pos, int L, int R, int l, int r, ll mod) {
if(l > R || r < L) return;
if(tree[pos].maxx < mod) return;
if(l == r) {
tree[pos].sum %= mod;
tree[pos].maxx %= mod;
return;
}
int mid = l + r >> ;
get_mod(pos << , L, R, l, mid, mod);
get_mod(pos << | , L, R, mid + , r, mod);
maintain(pos);
} void update(int pos, int aim, int l, int r, ll val) {
if(l == r && l == aim) {
tree[pos].maxx = tree[pos].sum = val;
return;
}
int mid = l + r >> ;
if(aim <= mid) update(pos << , aim, l, mid, val);
else update(pos << | , aim, mid + , r, val);
maintain(pos);
} ll query_sum(int pos, int L, int R, int l, int r) {
if(l > R || r < L) return ;
if(l >= L & r <= R) return tree[pos].sum;
int mid = l + r >> ;
return query_sum(pos << , L, R, l, mid) + query_sum(pos << | , L, R, mid + , r);
} int main() {
n = read(), m = read();
for(int i = ; i <= n; ++i) a[i] = read();
build(, , n);
for(int i = ; i <= m; ++i) {
int opt = read(), x = read(), y = read();
if(opt == ) printf("%I64d\n", query_sum(, x, y, , n));
if(opt == ) {
ll p = read();
get_mod(, x, y, , n, p);
}
if(opt == ) update(, x, , n, y);
}
return ;
}
CF438 The Child and Sequence的更多相关文章
- Codeforce 438D-The Child and Sequence 分类: Brush Mode 2014-10-06 20:20 102人阅读 评论(0) 收藏
D. The Child and Sequence time limit per test 4 seconds memory limit per test 256 megabytes input st ...
- Codeforces Round #250 (Div. 1) D. The Child and Sequence 线段树 区间取摸
D. The Child and Sequence Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest ...
- 题解——CodeForces 438D The Child and Sequence
题面 D. The Child and Sequence time limit per test 4 seconds memory limit per test 256 megabytes input ...
- Codeforces Round #250 (Div. 1) D. The Child and Sequence(线段树)
D. The Child and Sequence time limit per test 4 seconds memory limit per test 256 megabytes input st ...
- Codeforces Round #250 (Div. 1) D. The Child and Sequence
D. The Child and Sequence time limit per test 4 seconds memory limit per test 256 megabytes input st ...
- AC日记——The Child and Sequence codeforces 250D
D - The Child and Sequence 思路: 因为有区间取模操作所以没法用标记下传: 我们发现,当一个数小于要取模的值时就可以放弃: 凭借这个来减少更新线段树的次数: 来,上代码: # ...
- 438D - The Child and Sequence
D. The Child and Sequence time limit per test 4 seconds memory limit per test 256 megabytes input st ...
- Codeforces Round #250 (Div. 1) D. The Child and Sequence 线段树 区间求和+点修改+区间取模
D. The Child and Sequence At the children's day, the child came to Picks's house, and messed his h ...
- Codeforces 438D The Child and Sequence - 线段树
At the children's day, the child came to Picks's house, and messed his house up. Picks was angry at ...
随机推荐
- Error creating bean with name 'transactionManager' defined in ServletContext resource XXX
spring & hibernate整合时候 ,并且使用hibernate.cfg.xml文件时回报这个错误, 解决办法,在hibernate.cfg.xml中加入 <property ...
- DialogFragment 将数据传回Activity的onActivityResult方法
在MyActivity中 弹出一个DialogFragment (某一个控件的点击事件) search= findViewById(R.id.search); search.setOnClickLis ...
- Dubbo 的应用
--- 用于大规模服务化,通过在消费方获取服务提供方的地址列表,实现负载均衡,减轻服务器压力. 最简单调用图 节点角色说明: l Provider: 暴露服务的服务提供方. l Consumer ...
- 【BZOJ】3302: [Shoi2005]树的双中心 && 2103: Fire 消防站 && 2447: 消防站
[题意]给定带点权树,要求选择两个点x,y,满足所有点到这两个点中较近者的距离*点权的和最小.n<=50000,h<=100. [算法]树的重心 [题解]代码参考自:cgh_Andy 观察 ...
- 【BZOJ】3991: [SDOI2015]寻宝游戏 虚树+DFS序+set
[题意]给定n个点的带边权树,对于树上存在的若干特殊点,要求任选一个点开始将所有特殊点走遍后返回.现在初始没有特殊点,m次操作每次增加或减少一个特殊点,求每次操作后的总代价.n,m<=10^5. ...
- 【CodeForces】899 F. Letters Removing
[题目]F. Letters Removing [题意]给定只含小写字母.大写字母和数字的字符串,每次给定一个范围要求删除[l,r]内的字符c(l和r具体位置随删除变动),求m次操作后的字符串.n&l ...
- 深入理解Spring系列之七:web应用自动装配Spring配置
转载 https://mp.weixin.qq.com/s/Lf4akWFmcyn9ZVGUYNi0Lw 在<深入理解Spring系列之一:开篇>的示例代码中使用如下方式去加载Spring ...
- 在Oracle中查询表的大小
SELECT segment_name AS TABLENAME,round(BYTES/1024/1024,2) FROM user_segments WHERE segment_name='表名 ...
- 关于parse_str变量覆盖分析
这个漏洞有两个姿势.一个是不存在的时候一个是存在的时候. 经过测试该漏洞只在php5.2中存在,其余均不存在. 倘若在parse_str函数使用的代码上方未将其定义那么即存在变量覆盖漏洞否则不行. 还 ...
- 【Python学习】request库
Requests库(https://www.python-requests.org/)是一个擅长处理那些复杂的HTTP请求.cookie.header(响应头和请求头)等内容的Python第三方库. ...