题意:

给定一个长度为n的非负整数序列a,你需要支持以下操作:
1)给定l,r,输出a[l] + a[l+1] + ... + a[r]

2)给定l,r,x, 将a[l]、a[l+1]、....、a[r]x取模

3)给定k,y,将a[k]修改为y

n, m <= 100000,a[i], x, y <= 109


对于操作(1)(3)非常简单,线段树基本操作

问题是操作(2),显然的是我们不能对区间和取模,这样就很难受

但是我们可以想到,一个数若是比模数小,就不需要取模,而一个数w有效取模次数最多为log(w)

同时单个数被有效取模的一次只会花费O(logn)

因此每次修改至多使复杂度增加O(lognlogw)

这样我们对于区间l, r暴力对每个能取模的数取模即可

最后时间复杂度为O(mlognlogw)

 #include<bits/stdc++.h>
#define ll long long
#define uint unsigned int
#define ull unsigned long long
using namespace std;
const int maxn = ;
struct shiki {
ll maxx, sum;
}tree[maxn << ];
int n, m;
ll a[maxn]; inline ll read() {
ll x = , y = ;
char ch = getchar();
while(!isdigit(ch)) {
if(ch == '-') y = -;
ch = getchar();
}
while(isdigit(ch)) {
x = (x << ) + (x << ) + ch - '';
ch = getchar();
}
return x * y;
} inline void maintain(int pos) {
int ls = pos << , rs = pos << | ;
tree[pos].maxx = max(tree[ls].maxx, tree[rs].maxx);
tree[pos].sum = tree[ls].sum + tree[rs].sum;
} void build(int pos, int l, int r) {
if(l == r) {
tree[pos].maxx = tree[pos].sum = a[l];
return;
}
int mid = l + r >> ;
build(pos << , l, mid);
build(pos << | , mid + , r);
maintain(pos);
} void get_mod(int pos, int L, int R, int l, int r, ll mod) {
if(l > R || r < L) return;
if(tree[pos].maxx < mod) return;
if(l == r) {
tree[pos].sum %= mod;
tree[pos].maxx %= mod;
return;
}
int mid = l + r >> ;
get_mod(pos << , L, R, l, mid, mod);
get_mod(pos << | , L, R, mid + , r, mod);
maintain(pos);
} void update(int pos, int aim, int l, int r, ll val) {
if(l == r && l == aim) {
tree[pos].maxx = tree[pos].sum = val;
return;
}
int mid = l + r >> ;
if(aim <= mid) update(pos << , aim, l, mid, val);
else update(pos << | , aim, mid + , r, val);
maintain(pos);
} ll query_sum(int pos, int L, int R, int l, int r) {
if(l > R || r < L) return ;
if(l >= L & r <= R) return tree[pos].sum;
int mid = l + r >> ;
return query_sum(pos << , L, R, l, mid) + query_sum(pos << | , L, R, mid + , r);
} int main() {
n = read(), m = read();
for(int i = ; i <= n; ++i) a[i] = read();
build(, , n);
for(int i = ; i <= m; ++i) {
int opt = read(), x = read(), y = read();
if(opt == ) printf("%I64d\n", query_sum(, x, y, , n));
if(opt == ) {
ll p = read();
get_mod(, x, y, , n, p);
}
if(opt == ) update(, x, , n, y);
}
return ;
}

CF438 The Child and Sequence的更多相关文章

  1. Codeforce 438D-The Child and Sequence 分类: Brush Mode 2014-10-06 20:20 102人阅读 评论(0) 收藏

    D. The Child and Sequence time limit per test 4 seconds memory limit per test 256 megabytes input st ...

  2. Codeforces Round #250 (Div. 1) D. The Child and Sequence 线段树 区间取摸

    D. The Child and Sequence Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest ...

  3. 题解——CodeForces 438D The Child and Sequence

    题面 D. The Child and Sequence time limit per test 4 seconds memory limit per test 256 megabytes input ...

  4. Codeforces Round #250 (Div. 1) D. The Child and Sequence(线段树)

    D. The Child and Sequence time limit per test 4 seconds memory limit per test 256 megabytes input st ...

  5. Codeforces Round #250 (Div. 1) D. The Child and Sequence

    D. The Child and Sequence time limit per test 4 seconds memory limit per test 256 megabytes input st ...

  6. AC日记——The Child and Sequence codeforces 250D

    D - The Child and Sequence 思路: 因为有区间取模操作所以没法用标记下传: 我们发现,当一个数小于要取模的值时就可以放弃: 凭借这个来减少更新线段树的次数: 来,上代码: # ...

  7. 438D - The Child and Sequence

    D. The Child and Sequence time limit per test 4 seconds memory limit per test 256 megabytes input st ...

  8. Codeforces Round #250 (Div. 1) D. The Child and Sequence 线段树 区间求和+点修改+区间取模

    D. The Child and Sequence   At the children's day, the child came to Picks's house, and messed his h ...

  9. Codeforces 438D The Child and Sequence - 线段树

    At the children's day, the child came to Picks's house, and messed his house up. Picks was angry at ...

随机推荐

  1. 817C. Really Big Numbers 二分

    LINK 题意:给出两个数n, s,要求问1~n中\(x-bit(x)>=s\)的数有多少个.其中bit(x)指x的各位数之和 思路:首先观察能够发现,对于一个数如果满足了条件,由于x-bit( ...

  2. Linux系统调用和库函数

    #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include <unist ...

  3. 大聊Python----迭代器

    迭代器 我们已经知道,可以直接作用于for循环的数据类型有以下几种: 一类是集合数据类型,如list.tuple.dict.set.str等: 一类是generator,包括生成器和带yield的ge ...

  4. GCD HDU - 1695 莫比乌斯反演入门

    题目链接:https://cn.vjudge.net/problem/HDU-1695#author=541607120101 感觉讲的很好的一个博客:https://www.cnblogs.com/ ...

  5. webgote的例子(4)Sql注入(SelectGET)

    SQL Injection (Select/GET) 本章内容 (查询显示中要注意的错误) 这里面我们看一下 movie的数值,选择表单中的当我们选择的二个的时候 move的值也变成了第二个,选择表单 ...

  6. React 16 源码瞎几把解读 【三 点 一】 把react组件对象弄到dom中去(矛头指向fiber,fiber不解读这个过程也不知道)

    一.ReactDOM.render 都干啥了 我们在写react的时候,最后一步肯定是 ReactDOM.render( <div> <Home name="home&qu ...

  7. Tomcat参数调优包括日志、线程数、内存【转】

    [Tomcat中日志打印对性能测试的影响] 一般都提供了这样5个日志级别: ▪ Debug ▪ Info ▪ Warn ▪ Error ▪ Fatal 由于性能测试需要并发进行压力测试,如果日志级别是 ...

  8. 014 JVM面试题

    转自:http://www.importnew.com/31126.html 本文从 JVM 结构入手,介绍了 Java 内存管理.对象创建.常量池等基础知识,对面试中 JVM 相关的基础题目进行了讲 ...

  9. ireport报表制作, 通过节点、产品类型来判断,当该节点审核通过之后,报表相对应的审核意见及签名 显示相对应的内容

    1.代码①  (与本内容相关的代码:7~36)           以下类似 $P{P_XXXX} :均为页面端的传入参数 select so.sale_order_no as sale_order_ ...

  10. hdu 1597(矩阵快速幂)

    1597: 薛XX后代的IQ Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 228  Solved: 55[Submit][Status][Web Bo ...