推文:OpenCV-Python教程(11、轮廓检测)

轮廓发现

是基于图像边缘提取的基础,寻找对象轮廓的方法,所以边缘提取的阈值选定会影响最终轮廓的发现

相关API

findContours 发现轮廓

drawContours绘制轮廓

操作步骤

.转换图像为二值化图像:threshold方法或者canny边缘提取获取的都是二值化图像
.通过二值化图像寻找轮廓:findContours
.描绘轮廓:drawContours

一:使用直接使用阈值方法threshold方法获取二值化图像来选择轮廓

def contours_demo(image):
dst = cv.GaussianBlur(image,(,),)  #高斯模糊,消除噪声
gray = cv.cvtColor(dst,cv.COLOR_BGR2GRAY) #先变灰度图像
ret, binary = cv.threshold(gray,,,cv.THRESH_BINARY|cv.THRESH_OTSU) #获取二值图像
cv.imshow("binary image",binary) # cloneImage,contours,heriachy = cv.findContours(binary,cv.RETR_TREE,cv.CHAIN_APPROX_SIMPLE) #RETR_TREE包含检测内部
cloneImage,contours,heriachy = cv.findContours(binary,cv.RETR_EXTERNAL,cv.CHAIN_APPROX_SIMPLE) #RETR_EXTERNAL检测外部轮廓
for i, contour in enumerate(contours):
# cv.drawContours(image,contours,i,(,,),)  #绘制轮廓
cv.drawContours(image,contours,i,(,,),-)  #填充轮廓
print(i)
cv.imshow("detect contours",image) src = cv.imread("./lk.png") #读取图片
cv.namedWindow("input image",cv.WINDOW_AUTOSIZE) #创建GUI窗口,形式为自适应
cv.imshow("input image",src) #通过名字将图像和窗口联系 contours_demo(src) cv.waitKey() #等待用户操作,里面等待参数是毫秒,我们填写0,代表是永远,等待用户操作
cv.destroyAllWindows() #销毁所有窗口

二:使用canny边缘检测获取二值化图像

def contours_demo(image):
binary = edge_demo(image) cloneImage,contours,heriachy = cv.findContours(binary,cv.RETR_TREE,cv.CHAIN_APPROX_SIMPLE) #RETR_TREE包含检测内部
for i, contour in enumerate(contours):
# cv.drawContours(image,contours,i,(,,),)
cv.drawContours(image,contours,i,(,,),-)
print(i)
cv.imshow("detect contours",image) def edge_demo(image):
dst = cv.GaussianBlur(image,(,),)
gray = cv.cvtColor(dst,cv.COLOR_BGR2GRAY) #先变灰度图像 edge_output = cv.Canny(gray,,) cv.imshow("detect contours",edge_output)
return edge_output src = cv.imread("./lk.png") #读取图片
cv.namedWindow("input image",cv.WINDOW_AUTOSIZE) #创建GUI窗口,形式为自适应
cv.imshow("input image",src) #通过名字将图像和窗口联系 contours_demo(src) cv.waitKey() #等待用户操作,里面等待参数是毫秒,我们填写0,代表是永远,等待用户操作
cv.destroyAllWindows() #销毁所有窗口

相关知识补充

(一)findContours寻找轮廓

cv.findContours(binary,cv.RETR_TREE,cv.CHAIN_APPROX_SIMPLE) 
def findContours(image, mode, method, contours=None, hierarchy=None, offset=None): # real signature unknown; restored from __doc__
1.image:输入图像,图像必须为8-bit单通道图像,图像中的非零像素将被视为1,0像素保留其像素值,故加载图像后会自动转换为二值图像。可以通过threshold和canny获取
2.mode:轮廓检索模式

RETR_EXTERNAL:表示只检测最外层轮廓,对所有轮廓设置hierarchy[i][]=hierarchy[i][]=-
RETR_LIST:提取所有轮廓,并放置在list中,检测的轮廓不建立等级关系
RETR_CCOMP:提取所有轮廓,并将轮廓组织成双层结构(two-level hierarchy),顶层为连通域的外围边界,次层位内层边界
RETR_TREE:提取所有轮廓并重新建立网状轮廓结构
RETR_FLOODFILL:官网没有介绍,应该是洪水填充法
.method:轮廓近似方法

CHAIN_APPROX_NONE:获取每个轮廓的每个像素,相邻的两个点的像素位置差不超过1
CHAIN_APPROX_SIMPLE:压缩水平方向,垂直方向,对角线方向的元素,值保留该方向的重点坐标,如果一个矩形轮廓只需4个点来保存轮廓信息
CHAIN_APPROX_TC89_L1和CHAIN_APPROX_TC89_KCOS使用Teh-Chinl链逼近算法中的一种

返回值:

ret = cv.findContours(binary, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE)
cloneImage,contours,heriachy = cv.findContours(binary,cv.RETR_TREE,cv.CHAIN_APPROX_SIMPLE) #RETR_TREE包含检测内部
返回一个元组,内部有三个元素
<class 'numpy.ndarray'>
<class 'list'>
<class 'numpy.ndarray'>
第一个返回值:cloneImage是我们传入的二值化图像
第二个返回值:contours是一个列表,是轮廓本身,含有轮廓上面的各个点的位置信息
第三个返回值:heriachy是每条轮廓对应的属性

(二)drawContours绘制轮廓

cv.drawContours(image,contours,i,(,,),)
cv.drawContours(image,contours,i,(,,),-)
def drawContours(image, contours, contourIdx, color, thickness=None, lineType=None, hierarchy=None, maxLevel=None, offset=None): # real signature unknown; restored from __doc__
.image:输入输出图像,Mat类型即可
.contours:使用findContours检测到的轮廓数据,每个轮廓以点向量的形式存储
.contourIdx:绘制轮廓的只是变量,如果为负值则绘制所有输入轮廓
.color:轮廓颜色
.thickness:绘制轮廓所用线条粗细度,如果值为负值,则在轮廓内部绘制

OpenCV---轮廓发现的更多相关文章

  1. opencv——轮廓发现与轮廓(二值图像)分析

    引言 二值图像分析最常见的一个主要方式就是轮廓发现与轮廓分析,其中轮廓发现的目的是为轮廓分析做准备,经过轮廓分析我们可以得到轮廓各种有用的属性信息. 这里顺带提下边缘检测,和轮廓提取的区别: 边缘检测 ...

  2. opencv::轮廓发现(find contour in your image)

    轮廓发现(find contour) 轮廓发现是基于图像边缘提取的基础寻找对象轮廓的方法. 所以边缘提取的阈值选定会影响最终轮廓发现结果 //发现轮廓 cv::findContours( InputO ...

  3. Python+OpenCV图像处理(十六)—— 轮廓发现

    简介:轮廓发现是基于图像边缘提取的基础寻找对象轮廓的方法,所以边缘提取的阈值选定会影响最终轮廓发现结果. 代码如下: import cv2 as cv import numpy as np def c ...

  4. 【python+opencv】轮廓发现

    python+opencv---轮廓发现 轮廓发现---是基于图像边缘提取的基础寻找对象轮廓的方法, 所有边缘提取的阈值选定会影响最终轮廓发现的结果. 介绍两种API使用: -cv.findConto ...

  5. opencv轮廓外接矩形

    1.寻找轮廓 api void cv::findContours( InputOutputArray image, OutputArrayOfArrays contours, OutputArray ...

  6. OpenCV 轮廓基本特征

     http://blog.csdn.net/tiemaxiaosu/article/details/51360499 OpenCV 轮廓基本特征 2016-05-10 10:26 556人阅读 评论( ...

  7. OpenCV轮廓vectorvector

    OpenCV轮廓vectorvector,vector,vector,vector https://blog.csdn.net/Ahuuua/article/details/80593388   轮廓 ...

  8. python实现轮廓发现

    目录: (一)轮廓发现的介绍 (二)代码实现 (1)使用直接使用阈值方法threshold方法获取二值化图像来选择轮廓 (2)使用canny边缘检测获取二值化图像 (一)轮廓发现的介绍与API的介绍 ...

  9. 15、OpenCV Python 轮廓发现

    __author__ = "WSX" import cv2 as cv import numpy as np # 基于拓扑结构来发现和绘制(边缘提取) # cv.findConto ...

  10. opencv:图像轮廓发现

    #include <opencv2/opencv.hpp> #include <iostream> using namespace cv; using namespace st ...

随机推荐

  1. 20172330 2017-2018-1 《Java程序设计》第十周学习总结

    20172330 2017-2018-1 <程序设计与数据结构>第十周学习总结 教材学习内容总结 本周的学习内容为集合 集合 对象具有定义良好的接口,从而成为一种实现集合的完善体制. 动态 ...

  2. 按Right-BICEP要求的对任务二的测试用例

    测试方法:Right-BICEP 测试计划 1.Right-结果是否正确? 2.B-是否所有的边界条件都是正确的? 3.P-是否满足性能要求? 4.是否有乘除法? 5.是否有括号? 6.是否有真分数? ...

  3. 按照Right-BICEP要求设计四则运算3程序的单元测试用例

    按照Right-BICEP要求: Right——结果是否正确? B——是否所有的边界条件都是正确的? I——能查一下反响关联吗? C——能用其它手段交叉检查一下吗? E——你是否可以强制错误条件发生? ...

  4. asp.netcore mvc 权限拦截

    1-背景介绍 需要做一个简单权限系统,基于 角色,用户,菜单 的模式 基于IActionFilter全局拦截,在内部跳转或者浏览器跳转的时候,拦截是成功的,当通过AJAX 请求的时候,页面就不会跳转 ...

  5. HDU 2113 Secret Number

    http://acm.hdu.edu.cn/showproblem.php?pid=2113 Problem Description 有一天, KIKI 收到一张奇怪的信, 信上要KIKI 计算出给定 ...

  6. Node.js系列——(1)安装配置与基本使用

    1.安装 进入下载地址 小编下载的是msi文件,下一步下一步傻瓜式安装. 打印个hello看看: 2.REPL 全称Read Eval Print Loop,即交互式解释器,可以执行读取.执行.打印. ...

  7. py27使用redis

    1.安装redis pip install redis 转载请注明博客出处:http://www.cnblogs.com/cjh-notes/

  8. delphi 中如何执行SqlParameter形式的SQL语句

    procedure TForm1.Button1Click(Sender: TObject); begin ADOConnection1.Open('); ADOQuery1.Close; ADOQu ...

  9. 在64位系统上部署BDE的要点

    首先,据我所知,Borland/CodeGear没有发布过支持64bit windows的BDE安装包,如果你在网上看到了相关的BDE安装包,很有可能是使用者自己重新打包发布的. 无论是在32bit  ...

  10. 第110天:Ajax原生js封装函数

    一.Ajax的实现主要分为四部分: 1.创建Ajax对象 // 创建ajax对象 var xhr = null; if(window.XMLHttpRequest){ xhr = new XMLHtt ...