Batch Normalization: 原理及细节

觉得有用的话,欢迎一起讨论相互学习~Follow Me

参考文献
吴恩达deeplearningai课程
课程笔记
Udacity课程

为了标准化这些值,我们首先需要计算出批数据中的平均值,如果你仔细看这些代码,你会发现这不是对输入的批数据计算平均值,而是对任意一个特定层的在传入非线性函数之前的输出求平均值。然后将其通过非线性函数后传递给下一层作为输入。

我们将平均值表示为\(\mu_B\),是所有\(x_i\) 值得和然后除以\(x_i\) 的个数\(m\)。
\[
\mu_B \leftarrow \frac{1}{m}\sum_{i=1}^m x_i
\]

然后我们需要计算方差或者均方差,用\(\sigma_{B}^{2}\)表示。如果你不熟悉数理统计,简单来说就是将每个\(x_i\)的值将其减去这个批次的平均值(先前我们计算过这个值并且用\(\mu_B\)表示)。这就是我们所说的对该值的偏差。我们将结果平方以得到平方偏差。将批次中所有数据的平方偏差求和再除以数值的个数即\(m\),所得的这个平均值叫做平方偏差。
\[
\sigma_{B}^{2} \leftarrow \frac{1}{m}\sum_{i=1}^m (x_i - \mu_B)^2
\]

一旦我们有了均值和方差,我们就可以用下面的方程对数据进行归一化。对于每个值,我们将其减去平均值并处以标准差(几乎是)。(你可能多次听说过标准偏差,但如果你没有研究统计数据,你可能不知道标准偏差实际上是均方差的平方根.)

\[
\hat{x_i} \leftarrow \frac{x_i - \mu_B}{\sqrt{\sigma_{B}^{2} + \epsilon}}
\]

上面我们说的是几乎是标准偏差,这是因为该批次的实际标准偏差是\(\sqrt{\sigma_{B}^{2}}\),但是在我们的方程式中我们在分母的位置的平方根号中加入了一个很小的数\(\epsilon\)。这个\(\epsilon\)可以是任意一个很小的正数,在我们的代码中,我们使用值0.001.这个操作是为了确保我们不会试图使用0作为除数,但实际上他也的确为每个批次稍微增加了一点方差。

为什么增加方差?根据统计学上说法,这是有道理的,因为即使我们一次对一个批次进行标准化,我们也正在尝试估计总体训练集合上的分布,而总体方差高于从该总体中抽取的任何样本的方差,因此每批增加差异有助于将其考虑在内。

此时,我们已经得到了一个归一化的值,即 \(\hat{x_i}\) 。但我们不是直接使用它,而是将它乘以一个伽玛值 \(\gamma\),然后添加一个\(\beta\)。 \(\gamma\) 和 \(\beta\) 都是网络的可学习参数,分别用于缩放和移位归一化值。因为它们就像权重一样可以学习,所以它们可以在训练过程中为网络提供一些额外的旋钮,以帮助网络更好的学习。
\[
y_i \leftarrow \gamma \hat{x_i} + \beta
\]

我们现在有了神经层批量标准化后最终的输出,我们可以将其传递给非线性激活函数例如:sigmoid, tanh, ReLU, Leaky ReLU等等。在原始批量标准化论文中Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. 他们提到可能会出现希望在非线性之后而不是之前执行批量标准化,但实际上实践中很难找到像这样的用途。

Tensorflow BatchNormalization详解:1_原理及细节的更多相关文章

  1. Tensorflow BatchNormalization详解:4_使用tf.nn.batch_normalization函数实现Batch Normalization操作

    使用tf.nn.batch_normalization函数实现Batch Normalization操作 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献 吴恩达deeplearnin ...

  2. Tensorflow BatchNormalization详解:3_使用tf.layers高级函数来构建带有BatchNormalization的神经网络

    Batch Normalization: 使用tf.layers高级函数来构建带有Batch Normalization的神经网络 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献 吴 ...

  3. Tensorflow BatchNormalization详解:2_使用tf.layers高级函数来构建神经网络

    Batch Normalization: 使用tf.layers高级函数来构建神经网络 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献 吴恩达deeplearningai课程 课程笔 ...

  4. 丰富图文详解B-树原理,从此面试再也不慌

    本文始发于个人公众号:TechFlow,原创不易,求个关注 本篇原计划在上周五发布,由于太过硬核所以才拖到了这周五.我相信大家应该能从标题当中体会到这个硬核. 周五的专题是大数据和分布式,我最初的打算 ...

  5. Git详解之二 Git细节拾遗

    git知识点详解 文件状态 现在我们手上已经有了一个真实项目的 Git 仓库,并从这个仓库中取出了所有文件的工作拷贝.接下来,对这些文件作些修改,在完成了一个阶段的目标之后,提交本次更新到仓库. 请记 ...

  6. 线段树详解 (原理,实现与应用)(转载自:http://blog.csdn.net/zearot/article/details/48299459)

    原文地址:http://blog.csdn.net/zearot/article/details/48299459(如有侵权,请联系博主,立即删除.) 线段树详解    By 岩之痕 目录: 一:综述 ...

  7. P2P技术详解(一):NAT详解——详细原理、P2P简介

    1. IPv4协议和NAT的由来 今天,无数快乐的互联网用户在尽情享受Internet带来的乐趣.他们浏览新闻,搜索资料,下载软件,广交新朋,分享信息,甚至于足不出户获取一切日用所需.企业利用互联网发 ...

  8. TensorFlow 安装详解

    摘要: 原创出处:www.bysocket.com 泥瓦匠BYSocket 希望转载,保留摘要,谢谢! 『不要把手段当成目标 — <一个瑜伽行者的自传>』   本文提纲 1. 机器学习 2 ...

  9. Percona-xtrabackup 使用详解与原理

    现在有个需求需要对使用 innodb 的数据库进行热备.网上查了很多工具皆推荐 Percona-xtrabackup 于是就仔细了解调研一番. 我们可以前往 https://www.percona.c ...

随机推荐

  1. component-scan标签的use-default-filters属性的作用以及原理分析

    一.背景 ​ 我们在Spring+SpringMVC+Mybatis的集成开发中,经常会遇到事务配置不起作用等问题,有时候就是因为包扫描出了问题,其中component-scan的标签的use-def ...

  2. 大前端-全栈-node+easyui+express+vue+es6+webpack+react

    作者声明:本博客中所写的文章,都是博主自学过程的笔记,参考了很多的学习资料,学习资料和笔记会注明出处,所有的内容都以交流学习为主.有不正确的地方,欢迎批评指正 视频来源:https://www.bil ...

  3. “Hello World!”团队第三周召开的第三次会议

    今天是我们团队“Hello World!”团队第三周召开的第三次会议.博客内容: 一.会议时间 二.会议地点 三.会议成员 四.会议内容 五.todo list 六.会议照片 七.燃尽图 八.代码地址 ...

  4. 团队展示(I know)

    一.队员姓名与学号 姓名 学号 组长 陈家权 031502107 赖晓连 031502118 ★ 雷晶 031502119 林巧娜 031502125 庄加鑫 031502147 二.队名 I kno ...

  5. IT小小鸟 读书笔记

    讲真的,整本书我并没有看完,翻阅了一下,然后小小的借鉴了一下! 首先设计你自己的进度条 进度条的设计是一个很多人都知道的故事:同样的耗时,如果不给任何进度提示,只是在完成之后才弹出一个完成消息,中间没 ...

  6. Java 数组转字符

    public static String toString(int[] arr){ String temp = ""; for(int i = 0;i<arr.length; ...

  7. oracle & 的用法!

    /*select * from emp_bak where deptno = &"Department number" order by ename; select * f ...

  8. IDEA中Git的更新/提交/还原方法

    记录一下在IDEA上怎样将写的代码提交到GitHub远程库: 下面这个图是基本的提交代码的顺序: 1. 将代码Add到stage暂存区本地修改了代码后,需先将代码add到暂存区,最后才能真正提价到gi ...

  9. egret 开发总结

    用egret快两年了,开发过两款成功的游戏.<<妖怪修走 |诸神的黄昏>><<损友圈|我的地盘>> 妖怪修走是个重度游戏,付费率超高.也比较成功. 损友 ...

  10. CentOS卸载系统自带的OpenJDK并安装Sun的JDK的方法

    查看目前系统的jdk: rpm -qa | grep jdk 得到的结果: [root@dc-01 java]#  rpm -qa | grep jdk java-1.6.0-openjdk-1.6. ...