二叉查找树定义

二叉查找树(英语:Binary Search Tree),也称二叉搜索树、有序二叉树(英语:ordered binary tree),排序二叉树(英语:sorted binary tree),是指一棵空树或者具有下列性质的二叉树:

  1. 若任意节点的左子树不空,则左子树上所有节点的值均小于它的根节点的值;
  2. 若任意节点的右子树不空,则右子树上所有节点的值均大于它的根节点的值;
  3. 任意节点的左、右子树也分别为二叉查找树;
  4. 没有键值相等的节点。

二叉查找树相比于其他数据结构的优势在于查找、插入的时间复杂度较低。为O(log n)。

三层二叉查找树

二叉查找树的操作主要是运用的递归的思想,可操作的Object类必须继承了Comparable接口,个人实现查找树主要是参考了《数据结构与算法分析》这本书。因为遍历涉及到三种遍历方式,所以届时单独开一篇。

树的结点定义

 private static class BinaryNode<T>{
BinaryNode(T theElement) {
this(theElement,null,null);
}
BinaryNode(T theElement,BinaryNode<T> lt,BinaryNode<T> rt) {
element=theElement;
left=lt;
right=rt;
}
T element;//根节点
BinaryNode<T> left;//左子树
BinaryNode<T> right;//右子树
}

contains方法

 private boolean contains(T x,BinaryNode<T> t){
if(t==null)
return false;
int compareResult=x.compareTo(t.element);
if(compareResult<0)
return contains(x,t.left); //递归
else if (compareResult>0) {
return contains(x, t.right);
}
else {
return true;
}
}

contains方法主要是查找当前二叉树是否还有某个节点,利用了comparaTo方法递归调用。

findMin()与findMax()方法

 private BinaryNode<T> findMin(BinaryNode<T> t){
//非递归写法
if(t!=null)
while(t.left!=null)
t=t.left;
return t;
//递归写法
/*if(t==null)
return null;
else if (t.left==null) {
return t;
}
return findMin(t.left);*/
}

findMin与findMax方法类似,这里只列出一种即可。然后仍有两种方法解决此问题,一种为递归,一种非递归。

非递归方法就是采用了while循坏思想,直到找出最左的节点即可。

insert方法

 private BinaryNode<T> insert(T x,BinaryNode<T> t){
if(t==null)//生成新的节点
return new BinaryNode<T>(x, null, null);
if(contains(x))//如果二叉树中已经有x元素,则不进行任何操作
return t;
else {
int compareResult=x.compareTo(root.element);
if(compareResult<0){
t.left=insert(x, t.left);
}
else {
t.right=insert(x, t.right);
}
return t;
}
}

remove方法

 private BinaryNode<T> remove(T x,BinaryNode<T> t){
if(t==null)
return t;
int compareResult=x.compareTo(t.element);
if(compareResult<0){
t.left=remove(x, t.left);
}
else if(compareResult>0){
t.right=remove(x, t.right);
}
else if (t.left!=null&&t.right!=null) { //两个孩子情况,采取懒惰删除
t.element=findMin(t.right).element;
t.right=remove(t.element, t.right);
}
else { //单个孩子情况
t=(t.left!=null)?t.left:t.right;
}
return t;
}

删除节点时需要考虑两种情况,一种为两个孩子的情况,一种为单个孩子的情况。

如图为删除5节点为单个孩子情况

此图是删除3节点两个孩子的情况,具体做法是找出该节点右子树中最小的节点替换当前删除的节点

全部的代码如下(暂缺遍历)

 package Tree;

 public class BinarySearchTree<T extends Comparable<? super T>> {
private static class BinaryNode<T>{
BinaryNode(T theElement) {
this(theElement,null,null);
}
BinaryNode(T theElement,BinaryNode<T> lt,BinaryNode<T> rt) {
element=theElement;
left=lt;
right=rt;
}
T element;//根节点
BinaryNode<T> left;//左子树
BinaryNode<T> right;//右子树
}
private BinaryNode<T> root;//定义根节点
public BinarySearchTree() {
root=null;
}
public void makeEmpty(){
root=null;
}
public boolean isEmpty(){
return root==null;
}
public boolean contains(T x){
return contains(x,root);
}
public T findMin() throws Exception{
if(isEmpty())
throw new Exception();
return findMin(root).element;
}
public T findMax() throws Exception{
if(isEmpty())
throw new Exception();
return findMax(root).element;
}
public void insert(T x){
root=insert(x,root);
}
public void remove(T x){
root=remove(x,root);
}
private boolean contains(T x,BinaryNode<T> t){
if(t==null)
return false;
int compareResult=x.compareTo(t.element);
if(compareResult<0)
return contains(x,t.left); //递归
else if (compareResult>0) {
return contains(x, t.right);
}
else {
return true;
}
}
private BinaryNode<T> findMin(BinaryNode<T> t){
//非递归写法
if(t!=null)
while(t.left!=null)
t=t.left;
return t;
//递归写法
/*if(t==null)
return null;
else if (t.left==null) {
return t;
}
return findMin(t.left);*/
}
private BinaryNode<T> findMax(BinaryNode<T> t){
if(t!=null)
while(t.right!=null)
t=t.right;
return t;
}
private BinaryNode<T> insert(T x,BinaryNode<T> t){
if(t==null)//生成新的节点
return new BinaryNode<T>(x, null, null);
if(contains(x))//如果二叉树中已经有x元素,则不进行任何操作
return t;
else {
int compareResult=x.compareTo(root.element);
if(compareResult<0){
t.left=insert(x, t.left);
}
else {
t.right=insert(x, t.right);
}
return t;
}
}
private BinaryNode<T> remove(T x,BinaryNode<T> t){
if(t==null)
return t;
int compareResult=x.compareTo(t.element);
if(compareResult<0){
t.left=remove(x, t.left);
}
else if(compareResult>0){
t.right=remove(x, t.right);
}
else if (t.left!=null&&t.right!=null) { //两个孩子情况,采取懒惰删除
t.element=findMin(t.right).element;
t.right=remove(t.element, t.right);
}
else { //单个孩子情况
t=(t.left!=null)?t.left:t.right;
}
return t;
} }

也可访问我的gihub数据结构的部分,暂时内容较少。

JAVA数据结构--二叉查找树的更多相关文章

  1. Java数据结构和算法(四)赫夫曼树

    Java数据结构和算法(四)赫夫曼树 数据结构与算法目录(https://www.cnblogs.com/binarylei/p/10115867.html) 赫夫曼树又称为最优二叉树,赫夫曼树的一个 ...

  2. Java数据结构和算法(二)树的基本操作

    Java数据结构和算法(二)树的基本操作 数据结构与算法目录(https://www.cnblogs.com/binarylei/p/10115867.html) 一.树的遍历 二叉树遍历分为:前序遍 ...

  3. 数据结构:JAVA实现二叉查找树

    数据结构:JAVA实现二叉查找树 写在前面 二叉查找树(搜索树)是一种能将链表插入的灵活性与有序数组查找的高效性结合在一起的一种数据结构. 观察二叉查找树,我们发现任何一个节点大于左子节点且小于其右子 ...

  4. 数据结构------------------二叉查找树(BST)的java实现

    数据结构------------------二叉查找树(BST)的java实现 二叉查找树(BST)是一种能够将链表插入的灵活性和有序数组查找的高效性相结合的一种数据结构.它的定义如下: 二叉查找树是 ...

  5. Java数据结构和算法(七)B+ 树

    Java数据结构和算法(七)B+ 树 数据结构与算法目录(https://www.cnblogs.com/binarylei/p/10115867.html) 我们都知道二叉查找树的查找的时间复杂度是 ...

  6. Java数据结构和算法(五)二叉排序树(BST)

    Java数据结构和算法(五)二叉排序树(BST) 数据结构与算法目录(https://www.cnblogs.com/binarylei/p/10115867.html) 二叉排序树(Binary S ...

  7. Java数据结构和算法(二)顺序存储的树结构

    Java数据结构和算法(二)顺序存储的树结构 数据结构与算法目录(https://www.cnblogs.com/binarylei/p/10115867.html) 二叉树也可以用数组存储,可以和完 ...

  8. 一文掌握关于Java数据结构所有知识点(欢迎一起完善)

    在我们学习Java的时候,很多人会面临我不知道继续学什么或者面试会问什么的尴尬情况(我本人之前就很迷茫).所以,我决定通过这个开源平台来帮助一些有需要的人,通过下面的内容,你会掌握系统的Java学习以 ...

  9. java数据结构和算法06(红黑树)

    这一篇我们来看看红黑树,首先说一下我啃红黑树的一点想法,刚开始的时候比较蒙,what?这到底是什么鬼啊?还有这种操作?有好久的时间我都缓不过来,直到我玩了两把王者之后回头一看,好像有点儿意思,所以有的 ...

随机推荐

  1. Windows下redis的安装与使用

    Redis是一个key-value存储系统.和Memcached类似,它支持存储的value类型相对更多,包括string(字符串).list(链表).set(集合).zset(sorted set ...

  2. 最近工作的一点小tips

    最近工作比较忙,但也积累了一些小tips,比较杂,不成系统,也并不很深入,就开一篇笼统的先记录一下,以后再深入挖掘. 1.-webkit-tap-highlight-color -webkit-tap ...

  3. [C++] c Struct VS c++ Struct

    c Struct c语言生命变量要加上struct c语言结构体内部不能有函数 C语言结构体没有共有,私有和继承

  4. Java 程序员最喜欢的 11 款免费 IDE 编辑器

    Java开发人员需要花费大量的时间埋头于Java代码中,使用各种不同的IDE(Intergrated Development Environment)来开发Java代码,所以下面我将为大家介绍11个不 ...

  5. Python 日期和时间戳的转换

    Python 日期和时间戳的转换 1. Python中处理时间的模块 Python中处理时间的模块有time.datetime和calendar. 在Python中表示时间的方式: 时间戳:10位整数 ...

  6. Insufficient free space for journal files

    前两天请假了,公司的很多app突然挂掉了,说是mongodb莫名的挂掉了,赶紧进去看了看日志: --31T14:: [initandlisten] ERROR: Insufficient free s ...

  7. vue项目引入第三方js插件,单个js文件引入成功,使用该插件方法时报错(问题已解决)

    1.引入第三方js文件,npm安装不了 2.控制台显示引入成功 3.在methods下使用 图片看不清请看下面代码 updateTime() { setInterval(()=>{ var cd ...

  8. Centos7下安装与卸载Jdk1.8

    安装 去官网下载jdk:http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html 使用xs ...

  9. 【转载】Zookeeper 安装和配置

    [转载原文链接 ] Zookeeper的安装和配置十分简单, 既可以配置成单机模式, 也可以配置成集群模式. 下面将分别进行介绍. 单机模式 点击这里下载zookeeper的安装包之后, 解压到合适目 ...

  10. CodeForces 540D Bad Luck Island (DP)

    题意:一个岛上有石头,剪刀和布,规则就不用说了,问你最后只剩下每一种的概率是多少. 析:很明显的一个概率DP,用d[i][j][k]表示,石头剩下 i 个,剪刀剩下 j 个,布剩下 k 个,d[r][ ...