【BZOJ1486】[HNOI2009]最小圈 分数规划
【BZOJ1486】[HNOI2009]最小圈
Description


Input
Output
Sample Input
1 2 5
2 3 5
3 1 5
2 4 3
4 1 3
Sample Output
题解:题意给的实在不能太明显了,直接上分数规划。二分答案mid,将边权改为(原边权-mid),然后spfa判断是否有负环,若有则调整上界,否则调整下界。
然而码完一发交上去TLE,看了题解发现这题居然要用DFS版的SPFA!有谁能一上来就想到用DFS的我也是醉了~
#include <cstdio>
#include <cstring>
#include <iostream>
#define eps 1e-9
using namespace std;
int n,m,cnt,ok;
int pa[10010],pb[10010];
int head[3010],to[10010],next[10010],vis[3010];
double val[10010],dis[3010],pc[10010];
void add(int a,int b,double c)
{
to[cnt]=b,val[cnt]=c,next[cnt]=head[a],head[a]=cnt++;
}
void dfs(int x)
{
vis[x]=1;
for(int i=head[x];i!=-1&&!ok;i=next[i])
{
if(dis[to[i]]>dis[x]+val[i])
{
dis[to[i]]=dis[x]+val[i];
if(vis[to[i]])
{
ok=1; return ;
}
dfs(to[i]);
}
}
vis[x]=0;
}
int solve(double sta)
{
int i,u;
memset(head,-1,sizeof(head)),cnt=0;
memset(vis,0,sizeof(vis));
for(i=1;i<=m;i++) add(pa[i],pb[i],pc[i]-sta);
for(i=1;i<=n;i++) dis[i]=0;
for(i=1,ok=0;i<=n;i++)
{
dfs(i);
if(ok) return 1;
}
return 0;
}
int main()
{
scanf("%d%d",&n,&m);
int i,j,a,b;
double l=10000000,r=0,mid;
for(i=1;i<=m;i++) scanf("%d%d%lf",&pa[i],&pb[i],&pc[i]),l=min(l,pc[i]),r=max(r,pc[i]);
while(r-l>eps)
{
mid=(l+r)*0.5;
if(solve(mid)) r=mid;
else l=mid;
}
printf("%.8f",r);
return 0;
}
【BZOJ1486】[HNOI2009]最小圈 分数规划的更多相关文章
- [bzoj1486][HNOI2009]最小圈——分数规划+spfa+负环
题目 传送门 题解 这个题是一个经典的分数规划问题. 把题目形式化地表示,就是 \[Minimize\ \lambda = \frac{\sum W_{i, i+1}}{k}\] 整理一下,就是 \[ ...
- [HNOI2009]最小圈 分数规划 spfa判负环
[HNOI2009]最小圈 分数规划 spfa判负环 题面 思路难,代码简单. 题目求圈上最小平均值,问题可看为一个0/1规划问题,每个边有\(a[i],b[i]\)两个属性,\(a[i]=w(u,v ...
- 【bzoj1486】[HNOI2009]最小圈 分数规划+Spfa
题目描述 样例输入 4 5 1 2 5 2 3 5 3 1 5 2 4 3 4 1 3 样例输出 3.66666667 题解 分数规划+Spfa判负环 二分答案mid,并将所有边权减去mid,然后再判 ...
- Luogu3199 HNOI2009 最小圈 分数规划、SPFA
传送门 可以发现它的式子是一个分数规划的式子,所以可以二分答案,将所有边权减掉当前二分值之后跑一边$SPFA$判断负环即可. 然而这道题把$BFS-SPFA$卡掉了却没卡$DFS-SPFA$ 出题人: ...
- BZOJ1486 HNOI2009 最小圈 【01分数规划】
BZOJ1486 HNOI2009 最小圈 Description 应该算是01分数规划的裸板题了吧..但是第一次写还是遇到了一些困难,vis数组不清零之类的 假设一个答案成立,那么一定可以找到一个环 ...
- bzoj千题计划227:bzoj1486: [HNOI2009]最小圈
http://www.lydsy.com/JudgeOnline/problem.php?id=1486 二分答案 dfs版spfa判负环 #include<queue> #include ...
- 【BZOJ1486】【HNOI2009】最小圈 分数规划 dfs判负环。
链接: #include <stdio.h> int main() { puts("转载请注明出处[辗转山河弋流歌 by 空灰冰魂]谢谢"); puts("网 ...
- 2018.09.24 bzoj1486: [HNOI2009]最小圈(01分数规划+spfa判负环)
传送门 答案只保留了6位小数WA了两次233. 这就是一个简单的01分数规划. 直接二分答案,根据图中有没有负环存在进行调整. 注意二分边界. 另外dfs版spfa判负环真心快很多. 代码: #inc ...
- 分数规划(Bzoj1486: [HNOI2009]最小圈)
题面 传送门 分数规划 分数规划有什么用? 可以把带分数的最优性求解式化成不带除发的运算 假设求max{\(\frac{a}{b},b>0\)} 二分一个权值\(k\) 令\(\frac{a}{ ...
随机推荐
- atoi 和 itoa
转自:http://www.cnblogs.com/cobbliu/archive/2012/08/25/2656176.html atoi 和 itoa是面试笔试经常要考到的题目,下面两份代码是用C ...
- RESTful Web Service实战 小结1
1 REST的基本实现形式HTTP+URI+XML,但不是唯一形式.XML后来被Json格式替代.REST是一中架构风格(Representational State Transfer,表述性状态转移 ...
- CentOS-6.5下安装navicat for mysql
一.安装前准备 安装epel源 安装wine 如果不安装wine,则可能会出现安装完navicat for mysql后无法启动的情况. 二.安装epel源 cd /tmp ...
- KVM部署LVS集群故障案例一则
一.故障现象 KVM部署LVS(Linux Virtual Server)集群后,能够单独以HTTP方式访问RS(Real Server)的实际IP,但无法通过VIP(Virtual IP)访问. 二 ...
- 在MAC上安装Oracle JDK
下载Mac版本的JDKhttp://www.oracle.com/technetwork/java/javase/downloads/index.html 下载之后,双击dmg文件安装 mac 下查看 ...
- yii2中的资源....
1.模板文件中访问view和controller,view : $this,controller :$this->context 模板文件显示流程: 1.控制器会在render中,把控制器本身, ...
- jdom 插入 修改 删除
创建XML文档 XML文件是一种典型的树形文件,每个文档元素都是一个document元素的子节点.而每个子元素都是一个Element对象,对象可以向下包含. 1 因此我们可以通过先创建元素再将元素添加 ...
- CodeForces 35D Animals
G - Animals Time Limit:2000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Submit ...
- response.setHeader各种用法
一秒刷新页面一次 response.setHeader("refresh","1"); 二秒跳到其他页面 (登陆跳转) response.setHeader(& ...
- [debootstrap]制作基于arm平台的debian文件系统
之前用过的Linux文件系统是直接busybox制作的,而当前使用的是debian的Jessie,看了一些博客后,了解到如果使用debian,那么直接使用debootstrap来构建文件系统即可 -- ...