[UOJ30]/[CF487E]Tourists

题目大意:

一个\(n(n\le10^5)\)个点\(m(m\le10^5)\)条边的无向图,每个点有点权。\(q(q\le10^5)\)次操作,操作包含以下两种:

  1. 修改一个点的点权。
  2. 找到一条连接\((u,v)\)的简单路径,使得最小权值最小。求最小权值。

思路:

缩点后建圆方树,用树链剖分维护权值。发现修改圆点后可能修改\(O(n)\)个方点。

考虑更改方点的含义,让方点只维护子结点,因此修改一个圆点只需要修改它的父亲方点(利用BFS序+线段树)。

统计信息时若\(\operatorname{lca}(u,v)\)为方点,则额外处理一下\(par[\operatorname{lca}(u,v)]\)的值。

时间复杂度\(\mathcal O(n\log^2n)\)。

源代码:

#include<stack>
#include<queue>
#include<cstdio>
#include<cctype>
#include<vector>
#include<climits>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
inline char getalpha() {
register char ch;
while(!isalpha(ch=getchar()));
return ch;
}
const int N=2e5+1;
int n,m,q,cnt;
struct Edge {
int x,y;
};
Edge edge[N];
int w[N];
std::vector<int> e[N];
inline void add_edge(const int &u,const int &v) {
e[u].push_back(v);
e[v].push_back(u);
}
std::stack<int> s;
int dfn[N],low[N],par[N];
void tarjan(const int &x,const int &par) {
s.push(x);
dfn[x]=low[x]=++dfn[0];
for(auto &y:e[x]) {
if(y==par) continue;
if(!dfn[y]) {
tarjan(y,x);
low[x]=std::min(low[x],low[y]);
if(low[y]>=dfn[x]) {
cnt++;
for(register int z=0;z!=y;s.pop()) {
z=s.top();
edge[m++]=(Edge){cnt,z};
}
edge[m++]=(Edge){cnt,x};
}
} else low[x]=std::min(low[x],dfn[y]);
}
}
int dep[N],top[N],son[N],size[N];
void dfs(const int &x,const int &par) {
::par[x]=par;
dep[x]=dep[par]+1;
size[x]=1;
for(unsigned i=0;i<e[x].size();i++) {
const int &y=e[x][i];
if(y==par) continue;
dfs(y,x);
size[x]+=size[y];
if(size[y]>size[son[x]]) son[x]=y;
}
}
void dfs(const int &x) {
dfn[x]=++dfn[0];
top[x]=x==son[par[x]]?top[par[x]]:x;
if(son[x]) dfs(son[x]);
for(unsigned i=0;i<e[x].size();i++) {
const int &y=e[x][i];
if(y==par[x]||y==son[x]) continue;
dfs(y);
}
}
int bfn[N],beg[N];
inline void bfs() {
static bool vis[N];
static std::queue<int> q;
q.push(1);
while(!q.empty()) {
const int &x=q.front();
vis[x]=true;
bfn[x]=++bfn[0];
if(!beg[par[x]]) beg[par[x]]=bfn[x];
size[x]=0;
if(x>n) w[x]=INT_MAX;
for(register auto &y:e[x]) {
if(vis[y]) continue;
q.push(y);
size[x]++;
if(x>n) w[x]=std::min(w[x],w[y]);
}
q.pop();
}
}
class SegmentTree {
#define _left <<1
#define _right <<1|1
#define mid ((b+e)>>1)
private:
int val[N<<2];
void push_up(const int &p) {
val[p]=std::min(val[p _left],val[p _right]);
}
public:
void modify(const int &p,const int &b,const int &e,const int &x,const int &y) {
if(b==e) {
val[p]=y;
return;
}
if(x<=mid) modify(p _left,b,mid,x,y);
if(x>mid) modify(p _right,mid+1,e,x,y);
push_up(p);
}
int query(const int &p,const int &b,const int &e,const int &l,const int &r) const {
if(b==l&&e==r) return val[p];
int ret=INT_MAX;
if(l<=mid) ret=std::min(ret,query(p _left,b,mid,l,std::min(mid,r)));
if(r>mid) ret=std::min(ret,query(p _right,mid+1,e,std::max(mid+1,l),r));
return ret;
}
#undef _left
#undef _right
#undef mid
};
SegmentTree t1,t2;
inline int query(int x,int y) {
int ret=INT_MAX;
while(top[x]!=top[y]) {
if(dep[top[x]]<dep[top[y]]) std::swap(x,y);
ret=std::min(ret,t1.query(1,1,cnt,dfn[top[x]],dfn[x]));
x=par[top[x]];
}
if(dep[x]<dep[y]) std::swap(x,y);
ret=std::min(ret,t1.query(1,1,cnt,dfn[y],dfn[x]));
if(y>n) ret=std::min(ret,t1.query(1,1,cnt,dfn[par[y]],dfn[par[y]]));
return ret;
}
int main() {
n=cnt=getint(),m=getint(),q=getint();
for(register int i=1;i<=n;i++) w[i]=getint();
for(register int i=0;i<m;i++) {
add_edge(getint(),getint());
}
m=0;
for(register int i=1;i<=n;i++) {
if(!dfn[i]) tarjan(i,0);
}
for(register int i=1;i<=n;i++) e[i].clear();
for(register int i=0;i<m;i++) {
const int &u=edge[i].x,&v=edge[i].y;
add_edge(u,v);
}
dfn[0]=0;
dfs(1,0);
dfs(1);
bfs();
for(register int i=1;i<=cnt;i++) t1.modify(1,1,cnt,dfn[i],w[i]);
for(register int i=1;i<=cnt;i++) t2.modify(1,1,cnt,bfn[i],w[i]);
for(register int i=0;i<q;i++) {
const char opt=getalpha();
const int x=getint(),y=getint();
if(opt=='C') {
t1.modify(1,1,cnt,dfn[x],y);
if(par[x]<=n) continue;
t2.modify(1,1,cnt,bfn[x],y);
const int tmp=t2.query(1,1,cnt,beg[par[x]],beg[par[x]]+size[par[x]]-1);
t1.modify(1,1,cnt,dfn[par[x]],tmp);
}
if(opt=='A') {
printf("%d\n",query(x,y));
}
}
return 0;
}

[UOJ30]/[CF487E]Tourists的更多相关文章

  1. 【学习笔记】圆方树(CF487E Tourists)

    终于学了圆方树啦~\(≧▽≦)/~ 感谢y_immortal学长的博客和帮助 把他的博客挂在这里~ 点我传送到巨佬的博客QwQ! 首先我们来介绍一下圆方树能干什么呢qwq 1.将图上问题简化到树上问题 ...

  2. CF487E Tourists(圆方树+树链剖分+multiset/可删堆)

    CF487E Tourists(圆方树+树链剖分+multiset/可删堆) Luogu 给出一个带点权的无向图,两种操作: 1.修改某点点权. 2.询问x到y之间简单路径能走过的点的最小点权. 题解 ...

  3. CF487E Tourists 【圆方树 + 树剖 + 堆】

    题目链接 CF487E 题解 圆方树 + 树剖 裸题 建好圆方树维护路径上最小值即可 方点的值为其儿子的最小值,这个用堆维护 为什么只维护儿子?因为这样修改点的时候就只需要修改其父亲的堆 这样充分利用 ...

  4. CF487E Tourists 题解

    题目链接 思路分析 看到这道题首先想到的此题的树上版本.(不就是树链剖分的板子题么?) 但是此题是图上的两点间的走法,自然要想到是圆方树. 我们先无脑构建出圆方树. 我们先猜测:设后加入的节点权值为 ...

  5. CF487E Tourists 圆方树、树链剖分

    传送门 注意到我们需要求的是两点之间所有简单路径中最小值的最小值,那么对于一个点双联通分量来说,如果要经过它,则一定会经过这个点双联通分量里权值最小的点 注意:这里不能缩边双联通分量,样例\(2\)就 ...

  6. CF487E Tourists - Tarjan缩点 + 树剖 + multiset

    Solution 先Tarjan求出点双联通分量 并缩点. 用$multiset$维护 点双内的最小点权. 容易发现, 点双内的最小点权必须包括与它相连的割边的点权. 所以我们必须想办法来维护. 所以 ...

  7. CF487E Tourists【圆方树+tarjan+multiset+树剖+线段树】

    圆方树不仅能解决仙人掌问题(虽然我仙人掌问题也没用过圆方树都是瞎搞过去的),还可以解决一般图的问题 一般图问题在于缩完环不是一棵树,所以就缩点双(包括双向边) 每个方点存他所在点双内除根以外的点的最小 ...

  8. CF487E Tourists(圆方树+堆+链剖)

    本题解并不提供圆方树讲解. 所以不会圆方树的出门右转问yyb 没有修改的话圆方树+链剖. 方点的权值为点双连通分量里的最小值. 然后修改的话圆点照修,每一个方点维护一个小根堆. 考虑到可能被菊花卡死. ...

  9. CF487E Tourists[圆方树+树剖(线段树套set)]

    做这题的时候有点怂..基本已经想到正解了..结果感觉做法有点假,还是看了正解题解.. 首先提到简单路径上经过的点,就想到了一个关于点双的结论:两点间简单路径上所有可能经过的点的并等于路径上所有点所在点 ...

随机推荐

  1. 【leetcode 简单】第四题 罗马数字转整数

    罗马数字包含以下七种字符:I, V, X, L,C,D 和 M. 字符 数值 I 1 V 5 X 10 L 50 C 100 D 500 M 1000 例如, 罗马数字 2 写做 II ,即为两个并列 ...

  2. 在mac上安装ruby

    1.先装RVM,一个多版本ruby环境的管理和切换工具 curl -sSL https://get.rvm.io | bash -s stable 会自动装上最新版.更新RVM版本:$ rvm get ...

  3. 【译】第五篇 SQL Server代理理解代理错误日志

    本篇文章是SQL Server代理系列的第五篇,详细内容请参考原文. 正如这一系列的前几篇所述,SQL Server代理作业是由一系列的作业步骤组成,每个步骤由一个独立的类型去执行.在第四篇中我们看到 ...

  4. jQuery domready

    在jQuery里面,我们可以看到两种写法: $(function(){ //todo }) $(document).ready(function(){ //todo }) 这两个方法的效果都是一样的, ...

  5. SP 页面缓存以及清除缓存

    JSP 页面缓存以及清除缓存 一.概述 缓存的思想可以应用在软件分层的各个层面.它是一种内部机制,对外界而言,是不可感知的. 数据库本身有缓存,持久层也可以缓存.(比如:hibernate,还分1级和 ...

  6. POJ 2230 Watchcow(欧拉回路:输出点路径)

    题目链接:http://poj.org/problem?id=2230 题目大意:给你n个点m条边,Bessie希望能走过每条边两次,且两次的方向相反,让你输出以点的形式输出路径. 解题思路:其实就是 ...

  7. csu 1552(米勒拉宾素数测试+二分图匹配)

    1552: Friends Time Limit: 3 Sec  Memory Limit: 256 MBSubmit: 723  Solved: 198[Submit][Status][Web Bo ...

  8. 【ios开发之疑难杂症】xcode运行出现SpringBoard 无法启动应用程序(错误:7)

    问题:xcode运行出现SpringBoard 无法启动应用程序(错误:7) 解决方案: 重启模拟器

  9. JavaWeb知识回顾-使用IDEA开发一个servlet.

    刚刚开始学习使用IDEA进行开发,好多都不会,本来想直接导入一个eclipse项目,但是出现了好多错误,一时不知道怎么修改,所以就从最基本的servlet开始着手,慢慢熟悉这个工具,下面是使用IDEA ...

  10. 【重点】Jmeter----- 将 JDBC Request 查询结果作为下一个接口参数方法(二)

    一.说明 jmeter与数据库mysql已连接成功 二.需求 1.前置条件: 1.已user数据库的前8位手机号码作为行动计划的名称 2.行动计划的日期是2018-10-17 2.操作步骤: 1)获取 ...