想一下可以发现随便枚举一条直径做就可以了。

核越长越好。于是枚举核的过程可以做到O(n)

然后就是统计答案。

对于每个核最大偏心距肯定是核上面每个点不走核内的点所能走到的最远点的最值。

而且对于核的两端点,距离最远的点肯定是本条直径的端点。

于是我们可以用树形dp,处理出每个直径上的点不走本直径,所能走到的最远点的距离,记为f[]。

然后核每+1,就把当前点f[]塞到单调队列里面。每-1,就把队头弹出。

总共是O(N)。

#include <cstdio>
#include <algorithm>
#include <cstring>
#include <queue>
#include <deque>
const int N = 300 + 9;
struct edge{int next,link,w;}es[N*2];
std::deque<int>q;
int dis[N],d_len,len[N],pre[N],p[N],f[N],max_dis[N],ec,son[N],n,s,ans = 0x7fffffff;
bool mark[N];
inline void addedge(const int x,const int y,const int z)
{
es[++ec].next = son[x];
son[x] = ec;
es[ec].link = y;
es[ec].w = z;
}
inline void Addedge(const int x,const int y,const int z){addedge(x,y,z);addedge(y,x,z);}
int bfs(const int s)
{
memset(dis,0,sizeof dis);
memset(pre,0,sizeof pre);
static std::queue<int>q;
for (q.push(s); !q.empty(); ) {
const int u = q.front(); q.pop();
for (int i = son[u]; i; i = es[i].next) {
const int v = es[i].link;
if (v == s || dis[v]) continue;
dis[v] = dis[u] + es[i].w;
pre[v] = u;
q.push(v);
}
}
int res = 1;
for (int i = 1; i <= n; ++i) if (dis[i] > dis[res]) res = i;
return res;
}
void find_diameter()
{
int t,s;
d_len = dis[t = bfs(s = bfs(1))];
while (t) {
mark[t] = true;
p[++p[0]] = t;
len[p[0]] = dis[t] - dis[pre[t]];
t = pre[t];
}
}
void dp(const int u,const int fa)
{
for (int i = son[u]; i; i = es[i].next) {
if (mark[es[i].link] || es[i].link == fa) continue;
dp(es[i].link,u);
f[u] = std::max(f[es[i].link] + es[i].w,f[u]);
}
}
int calc_dis(const int u)
{
memset(f,0,sizeof f);
dp(u,0);
return f[u];
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("core.in","r",stdin);
freopen("core.out","w",stdout);
#endif
scanf("%d%d",&n,&s);
for (int i = 1,x,y,z; i < n; ++i) {
scanf("%d%d%d",&x,&y,&z);
Addedge(x,y,z);
}
find_diameter();
for (int i = 1; i <= p[0]; ++i) {
max_dis[i] = calc_dis(p[i]);
//printf("%d\n",max_dis[i]);
}
for (int i = 1,head = 1,sum = 0,front_dis = 0,tail_dis = 0; i <= p[0]; ++i) {
sum += len[i - 1];
tail_dis += len[i - 1];
while (sum > s) {
front_dis += len[head];
sum -= len[head++];
}
while (q.size() && q.front() < head) q.pop_front();
while (q.size() && max_dis[q.back()] <= max_dis[i]) q.pop_back();
q.push_back(i);
if (q.size()) ans = std::min(ans,std::max(max_dis[q.front()],std::max(d_len - tail_dis,front_dis)));
}
printf("%d\n",ans);
}

  

noip2007树网的核的更多相关文章

  1. Cogs 97. [NOIP2007] 树网的核 Floyd

    题目: http://cojs.tk/cogs/problem/problem.php?pid=97 97. [NOIP2007] 树网的核 ★☆   输入文件:core.in   输出文件:core ...

  2. [SDOI2011]消防/[NOIP2007] 树网的核

    消防 题目描述 某个国家有n个城市,这n个城市中任意两个都连通且有唯一一条路径,每条连通两个城市的道路的长度为zi(zi<=1000). 这个国家的人对火焰有超越宇宙的热情,所以这个国家最兴旺的 ...

  3. NOIP2007 树网的核 && [BZOJ2282][Sdoi2011]消防

    NOIP2007 树网的核 树的直径的最长性是一个很有用的概念,可能对一些题都帮助. 树的直径给定一棵树,树中每条边都有一个权值,树中两点之间的距离定义为连接两点的路径边权之和.树中最远的两个节点之间 ...

  4. noip2007 树网的核

    P1099 树网的核 112通过 221提交 题目提供者该用户不存在 标签动态规划树形结构2007NOIp提高组 难度提高+/省选- 提交该题 讨论 题解 记录   题目描述 设T=(V, E, W) ...

  5. 洛谷1099 [NOIP2007] 树网的核

    链接https://www.luogu.org/problemnew/show/P1099 题目描述 设T=(V,E,W)是一个无圈且连通的无向图(也称为无根树),每条边到有正整数的权,我们称TTT为 ...

  6. NOIP2007 树网的核 [提高组]

    题目:树网的核 网址:https://www.luogu.com.cn/problem/P1099 题目描述 设 T=(V,E,W)T=(V,E,W) 是一个无圈且连通的无向图(也称为无根树),每条边 ...

  7. BZOJ2282 SDOI2011消防/NOIP2007树网的核(二分答案+树形dp)

    要求最大值最小容易想到二分答案.首先对每个点求出子树中与其最远的距离是多少,二分答案后就可以标记上一些必须在所选择路径中的点,并且这些点是不应存在祖先关系的.那么如果剩下的点数量>=3,显然该答 ...

  8. [BZOJ1999][codevs1167][Noip2007]Core树网的核

    [BZOJ1999][codevs1167][Noip2007]Core树网的核 试题描述 设T=(V, E, W) 是一个无圈且连通的无向图(也称为无根树),每条边带有正整数的权,我们称T为树网(t ...

  9. BZOJ_1999_[Noip2007]Core树网的核_单调队列+树形DP

    BZOJ_1999_[Noip2007]Core树网的核_单调队列+树形DP Description 设T=(V, E, W) 是一个无圈且连通的无向图(也称为无根树),每条边带有正整数的权,我们称T ...

随机推荐

  1. 赶快收藏!16款最流行的 JavaScript 框架

    下面为大家介绍 16款最流行的 JavaScript 框架,赶快收藏! 1. jQuery – Javascript框架 jQuery 是最流行的 JavaScript 框架,它简化了HTML 文档遍 ...

  2. JavaScript-变量与作用域链

    jQuery片段:  1 var 2     // Will speed up references to window, and allows munging its name. 3     win ...

  3. 【BZOJ】1087: [SCOI2005]互不侵犯King

    [算法]状态压缩型DP [题解]http://www.cnblogs.com/xtx1999/p/4620227.html (orz) https://www.cnblogs.com/zbtrs/p/ ...

  4. spring-boot支持websocket

    spring-boot本身对websocket提供了很好的支持,可以直接原生支持sockjs和stomp协议.百度搜了一些中文文档,虽然也能实现websocket,但是并没有直接使用spring-bo ...

  5. Metasploit 一些重要模块使用介绍

    本文是"T00LS Metasploit(第一季)"的文档版,是个人在观看视频动手操作的一个记录,仅供学习.文中会介绍Metasploit的一些基本使用:端口扫描.smb扫描.服务 ...

  6. 好久没写了,SQLSERVER服务丢失后怎么办

    服务器突然中了病毒,查杀后,结果两个服务也丢了, 从其他机器上COPY了两个EXE过来,编写这两个服务就搞定了,不用重装MSSQL2005了 sc create MSSQLSERVER binpath ...

  7. python并发编程之multiprocessing进程(二)

    python的multiprocessing模块是用来创建多进程的,下面对multiprocessing总结一下使用记录. 系列文章 python并发编程之threading线程(一) python并 ...

  8. C++显式类型转换

    C++显式类型转换 (注:本文例程改编自<C++ Primer>) 关于类型转换,C++保留了C语言中的类型转换方式,并提供了4中新的类型转换方式.<Effective C++> ...

  9. javascript 之数据类型--01

    写在前面 国庆整理资料时,发现刚开始入门前端时学习JS 的资料,打算以一个基础入门博客记录下来,有不写不对的多多指教: 先推荐些书籍给需要的童鞋 <JavaScript 高级程序设计.pdf&g ...

  10. C# 怎么显示中文格式的日期、星期几

    //该语句显示的为英文格式DateTime.Now.DayOfWeek.ToString(); //显示中文格式星期几 "星期" + DateTime.Now.ToString(& ...