思路:不能走走过来的路,变点交换跑矩阵快速幂。

#include<bits/stdc++.h>
#define LL long long
#define fi first
#define se second
#define mk make_pair
#define PII pair<int, int>
#define y1 skldjfskldjg
#define y2 skldfjsklejg
using namespace std; const int N = 1e5 + ;
const int M = 5e5 + ;
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const int mod = ; int n, m, t, S, T, U[N], V[N], b[N]; struct Matrix {
int a[][], n; Matrix(int _n) {
n = _n;
memset(a, , sizeof(a));
} void init() {
for(int i = ; i < n; i++)
a[i][i] = ;
} Matrix operator * (const Matrix &B) const {
Matrix C(n);
for(int i = ; i < n; i++)
for(int j = ; j < n; j++)
for(int k = ; k < n; k++)
C.a[i][j] = (C.a[i][j] + a[i][k] * B.a[k][j]) % mod;
return C;
} Matrix operator ^ (int b) {
Matrix A = (*this);
Matrix ans(n);
ans.init();
while(b) {
if(b & ) ans = ans * A;
A = A * A; b >>= ;
}
return ans;
}
};
int main() {
scanf("%d%d%d%d%d", &n, &m, &t, &S, &T);
for(int i = ; i <= m; i++) {
scanf("%d%d", &U[i << ], &V[i << ]);
U[i << | ] = V[i << ];
V[i << | ] = U[i << ];
}
m = m << | ;
Matrix A(m + );
for(int i = ; i <= m; i++) {
if(U[i] == S) A.a[][i] = ;
if(V[i] == T) A.a[i][] = ;
for(int j = ; j <= m; j++)
if(V[i] == U[j] && (i ^ j) != )
A.a[i][j] = ;
}
A = A ^ (t + );
printf("%d\n", A.a[][]);
return ;
}

bzoj 1875 矩阵快速幂的更多相关文章

  1. bzoj(矩阵快速幂)

    题意:定义Concatenate(1,N)=1234567……n.比如Concatenate(1,13)=12345678910111213.给定n和m,求Concatenate(1,n)%m. (1 ...

  2. bzoj 2326 矩阵快速幂

    思路:矩阵快速幂搞一搞. #include<bits/stdc++.h> #define LL long long #define fi first #define se second # ...

  3. bzoj 4000 矩阵快速幂优化DP

    建立矩阵,跑快速幂 /************************************************************** Problem: 4000 User: idy002 ...

  4. bzoj 1898 矩阵快速幂

    思路:因为鱼的周期为2, 3, 4, 所以以12个为周期,我们拿走12步得到的矩阵进行快速幂,余下的再进行一次矩阵乘法. #include<bits/stdc++.h> #define L ...

  5. BZOJ 4547 矩阵快速幂

    思路: 肯定每回只加最大值和次大值 如果 一开始的最大值>0且次大值<0 那就一直加 加到次大值>0 搞一个矩阵 推斐波那契数列 求和 就好- //By SiriusRen #inc ...

  6. 【BZOJ】1875: [SDOI2009]HH去散步 矩阵快速幂

    [题意]给定n个点m边的无向图,求A到B恰好经过t条边的路径数,路径须满足每条边都和前一条边不同.n<=20,m<=60,t<=2^30. [算法]矩阵快速幂 [题解]将图的邻接矩阵 ...

  7. BZOJ 2510: 弱题( 矩阵快速幂 )

    每进行一次, 编号为x的数对x, 和(x+1)%N都有贡献 用矩阵快速幂, O(N3logK). 注意到是循环矩阵, 可以把矩阵乘法的复杂度降到O(N2). 所以总复杂度就是O(N2logK) --- ...

  8. BZOJ 1009: [HNOI2008]GT考试( dp + 矩阵快速幂 + kmp )

    写了一个早上...就因为把长度为m的也算进去了... dp(i, j)表示准考证号前i个字符匹配了不吉利数字前j个的方案数. kmp预处理, 然后对于j进行枚举, 对数字0~9也枚举算出f(i, j) ...

  9. BZOJ 2875: [Noi2012]随机数生成器( 矩阵快速幂 )

    矩阵快速幂...+快速乘就OK了 ----------------------------------------------------------------------------------- ...

随机推荐

  1. git相关网址

    git入门教程: 廖雪峰的官方网站 https://www.liaoxuefeng.com/wiki/0013739516305929606dd18361248578c67b8067c8c017b00 ...

  2. HTML入门(二)表格_字体_超链接_布局

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  3. Python学习笔记(四十三)virtualenv (创建一套“隔离”的Python运行环境)

    摘抄自:https://www.liaoxuefeng.com/wiki/0014316089557264a6b348958f449949df42a6d3a2e542c000/001432712108 ...

  4. h5 canvas动画,不知道谁写的

    <!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8" ...

  5. react-native关于ios的启动图标设置

    1.首先我们需要使用xcode打开项目,选择项目中的images.xcassets这个文件夹 2.点击AppIcon可以看到右边出现针对不同设备的图标尺寸 3.在左边空白处右击,选择Import... ...

  6. 蓝色的oa模板html_综合信息服务管理平台OA模板——后台

    链接:http://pan.baidu.com/s/1qXGGOAK 密码:2otu

  7. 商城项目(ssm+dubbo+nginx+mysql统合项目)总结(3)

    我不会在这里贴代码和详细步骤什么的,我觉得就算我把它贴出来,你们照着步骤做还是会出很多问题,我推荐你们去看一下黑马的这个视频,我个人感觉很不错,一步一步走下来可以学到很多东西.另外,视频和相关文档的话 ...

  8. Django之cfrs跨站请求伪造和xfs攻击

    跨站请求伪造 一.简介 django为用户实现防止跨站请求伪造的功能,通过中间件 django.middleware.csrf.CsrfViewMiddleware 来完成.而对于django中设置防 ...

  9. 122.Best Time to Buy and Sell Stock II---dp

    题目链接:https://leetcode.com/problems/best-time-to-buy-and-sell-stock-ii/description/ 题目大意:基本定义与121类似,不 ...

  10. Petrozavodsk Summer Training Camp 2017 Day 9

    Petrozavodsk Summer Training Camp 2017 Day 9 Problem A. Building 题目描述:给出一棵树,在树上取出一条简单路径,使得该路径的最长上升子序 ...