import jieba
import numpy as np # 打开词典文件,返回列表
def open_dict(Dict='hahah',path = r'/Users/zhangzhenghai/Downloads/Textming/'):
path = path + '%s.txt' %Dict
dictionary = open(path, 'r', encoding='utf-8')
dict = []
for word in dictionary:
word = word.strip('\n')
dict.append(word)
return dict def judgeodd(num):
if num % 2 == 0:
return 'even'
else:
return 'odd' deny_word = open_dict(Dict='否定词')
posdict = open_dict(Dict='positive')
negdict = open_dict(Dict = 'negative') degree_word = open_dict(Dict = '程度级别词语',path=r'/Users/zhangzhenghai/Downloads/Textming/')
mostdict = degree_word[degree_word.index('extreme')+1: degree_word.index('very')] #权重4,即在情感前乘以3
verydict = degree_word[degree_word.index('very')+1: degree_word.index('more')] #权重3
moredict = degree_word[degree_word.index('more')+1: degree_word.index('ish')]#权重2
ishdict = degree_word[degree_word.index('ish')+1: degree_word.index('last')]#权重0.5 def sentiment_score_list(dataset):
seg_sentence = dataset.split('。') count1 = []
count2 = []
for sen in seg_sentence: # 循环遍历每一个评论
segtmp = jieba.lcut(sen, cut_all=False) # 把句子进行分词,以列表的形式返回
i = 0 #记录扫描到的词的位置
a = 0 #记录情感词的位置
poscount = 0 # 积极词的第一次分值
poscount2 = 0 # 积极反转后的分值
poscount3 = 0 # 积极词的最后分值(包括叹号的分值)
negcount = 0
negcount2 = 0
negcount3 = 0
for word in segtmp:
if word in posdict: # 判断词语是否是情感词
poscount +=1
c = 0
for w in segtmp[a:i]: # 扫描情感词前的程度词
if w in mostdict:
poscount *= 4.0
elif w in verydict:
poscount *= 3.0
elif w in moredict:
poscount *= 2.0
elif w in ishdict:
poscount *= 0.5
elif w in deny_word: c+= 1
if judgeodd(c) == 'odd': # 扫描情感词前的否定词数
poscount *= -1.0
poscount2 += poscount
poscount = 0
poscount3 = poscount + poscount2 + poscount3
poscount2 = 0
else:
poscount3 = poscount + poscount2 + poscount3
poscount = 0
a = i+1
elif word in negdict: # 消极情感的分析,与上面一致
negcount += 1
d = 0
for w in segtmp[a:i]:
if w in mostdict:
negcount *= 4.0
elif w in verydict:
negcount *= 3.0
elif w in moredict:
negcount *= 2.0
elif w in ishdict:
negcount *= 0.5
elif w in degree_word:
d += 1
if judgeodd(d) == 'odd':
negcount *= -1.0
negcount2 += negcount
negcount = 0
negcount3 = negcount + negcount2 + negcount3
negcount2 = 0
else:
negcount3 = negcount + negcount2 + negcount3
negcount = 0
a = i + 1
elif word == '!' or word == '!': # 判断句子是否有感叹号
for w2 in segtmp[::-1]: # 扫描感叹号前的情感词,发现后权值+2,然后退出循环
if w2 in posdict or negdict:
poscount3 += 2
negcount3 += 2
break
i += 1 # 以下是防止出现负数的情况
pos_count = 0
neg_count = 0
if poscount3 <0 and negcount3 > 0:
neg_count += negcount3 - poscount3
pos_count = 0
elif negcount3 <0 and poscount3 > 0:
pos_count = poscount3 - negcount3
neg_count = 0
elif poscount3 <0 and negcount3 < 0:
neg_count = -pos_count
pos_count = -neg_count
else:
pos_count = poscount3
neg_count = negcount3
count1.append([pos_count,neg_count])
count2.append(count1)
count1=[] return count2 def sentiment_score(senti_score_list):
score = []
for review in senti_score_list:
score_array = np.array(review)
Pos = np.sum(score_array[:,0])
Neg = np.sum(score_array[:,1])
AvgPos = np.mean(score_array[:,0])
AvgPos = float('%.lf' % AvgPos)
AvgNeg = np.mean(score_array[:, 1])
AvgNeg = float('%.1f' % AvgNeg)
StdPos = np.std(score_array[:, 0])
StdPos = float('%.1f' % StdPos)
StdNeg = np.std(score_array[:, 1])
StdNeg = float('%.1f' % StdNeg)
score.append([Pos,Neg,AvgPos,AvgNeg,StdPos,StdNeg])
return score data = '用了几天又来评价的,手机一点也不卡,玩荣耀的什么的不是问题,充电快,电池够大,玩游戏可以玩几个小时,待机应该可以两三天吧,很赞'
data2 = '不知道怎么讲,真心不怎么喜欢,通话时声音小,新手机来电话竟然卡住了接不了,原本打算退,刚刚手机摔了,又退不了,感觉不会再爱,像素不知道是我不懂还是怎么滴 感觉还没z11mini好,哎要我怎么评价 要我如何喜欢努比亚 太失望了' print(sentiment_score(sentiment_score_list(data)))
print(sentiment_score(sentiment_score_list(data2)))

情感分析简介:

情感分析就是分析一句话说得是很主观还是客观描述,分析这句话表达的是积极的情绪还是消极的情绪。

原理
比如这么一句话:“这手机的画面极好,操作也比较流畅。不过拍照真的太烂了!系统也不好。”
① 情感词
要分析一句话是积极的还是消极的,最简单最基础的方法就是找出句子里面的情感词,积极的情感词比如:赞,好,顺手,华丽等,消极情感词比如:差,烂,坏,坑爹等。出现一个积极词就+1,出现一个消极词就-1。
里面就有“好”,“流畅”两个积极情感词,“烂”一个消极情感词。那它的情感分值就是1+1-1+1=2. 很明显这个分值是不合理的,下面一步步修改它。
② 程度词
“好”,“流畅”和‘烂“前面都有一个程度修饰词。”极好“就比”较好“或者”好“的情感更强,”太烂“也比”有点烂“情感强得多。所以需要在找到情感词后往前找一下有没有程度修饰,并给不同的程度一个权值。比如”极“,”无比“,”太“就要把情感分值*4,”较“,”还算“就情感分值*2,”只算“,”仅仅“这些就*0.5了。那么这句话的情感分值就是:4*1+1*2-1*4+1=3
③ 感叹号
可以发现太烂了后面有感叹号,叹号意味着情感强烈。因此发现叹号可以为情感值+2. 那么这句话的情感分值就变成了:4*1+1*2-1*4-2+1 = 1
④ 否定词
明眼人一眼就看出最后面那个”好“并不是表示”好“,因为前面还有一个”不“字。所以在找到情感词的时候,需要往前找否定词。比如”不“,”不能“这些词。而且还要数这些否定词出现的次数,如果是单数,情感分值就*-1,但如果是偶数,那情感就没有反转,还是*1。在这句话里面,可以看出”好“前面只有一个”不“,所以”好“的情感值应该反转,*-1。
因此这句话的准确情感分值是:4*1+1*2-1*4-2+1*-1 = -1
⑤ 积极和消极分开来
再接下来,很明显就可以看出,这句话里面有褒有贬,不能用一个分值来表示它的情感倾向。而且这个权值的设置也会影响最终的情感分值,敏感度太高了。因此对这句话的最终的正确的处理,是得出这句话的一个积极分值,一个消极分值(这样消极分值也是正数,无需使用负数了)。它们同时代表了这句话的情感倾向。所以这句评论应该是”积极分值:6,消极分值:7“
⑥ 以分句的情感为基础
再仔细一步,详细一点,一条评论的情感分值是由不同的分句加起来的,因此要得到一条评论的情感分值,就要先计算出评论中每个句子的情感分值。这条例子评论有四个分句,因此其结构如下([积极分值, 消极分值]):[[4, 0], [2, 0], [0, 6], [0, 1]] 
以上就是使用情感词典来进行情感分析的主要流程了,算法的设计也会按照这个思路来实现。
算法设计
第一步:读取评论数据,对评论进行分句。
第二步:查找对分句的情感词,记录积极还是消极,以及位置。
第三步:往情感词前查找程度词,找到就停止搜寻。为程度词设权值,乘以情感值。
第四步:往情感词前查找否定词,找完全部否定词,若数量为奇数,乘以-1,若为偶数,乘以1。
第五步:判断分句结尾是否有感叹号,有叹号则往前寻找情感词,有则相应的情感值+2。
第六步:计算完一条评论所有分句的情感值,用数组(list)记录起来。
第七步:计算并记录所有评论的情感值。
第八步:通过分句计算每条评论的积极情感均值,消极情感均值,积极情感方差,消极情感方差。

转自:https://zhuanlan.zhihu.com/p/23225934

原作者提供了下载链接: https://pan.baidu.com/s/1jIRoOxK 密码: 6wq4

存粹转发,留着以后自己用,后经试验部分代码健壮性差点(评论文字稍长,程序报错),需要的时候再加固。

【转】用python实现简单的文本情感分析的更多相关文章

  1. 基于 Spark 的文本情感分析

    转载自:https://www.ibm.com/developerworks/cn/cognitive/library/cc-1606-spark-seniment-analysis/index.ht ...

  2. NLP入门(十)使用LSTM进行文本情感分析

    情感分析简介   文本情感分析(Sentiment Analysis)是自然语言处理(NLP)方法中常见的应用,也是一个有趣的基本任务,尤其是以提炼文本情绪内容为目的的分类.它是对带有情感色彩的主观性 ...

  3. LSTM实现中文文本情感分析

    1. 背景介绍 文本情感分析是在文本分析领域的典型任务,实用价值很高.本模型是第一个上手实现的深度学习模型,目的是对深度学习做一个初步的了解,并入门深度学习在文本分析领域的应用.在进行模型的上手实现之 ...

  4. TensorFlow实现文本情感分析详解

    http://c.biancheng.net/view/1938.html 前面我们介绍了如何将卷积网络应用于图像.本节将把相似的想法应用于文本. 文本和图像有什么共同之处?乍一看很少.但是,如果将句 ...

  5. TensorFlow文本情感分析实现

    TensorFlow文本情感分析实现 前面介绍了如何将卷积网络应用于图像.本文将把相似的想法应用于文本. 文本和图像有什么共同之处?乍一看很少.但是,如果将句子或文档表示为矩阵,则该矩阵与其中每个单元 ...

  6. LSTM 文本情感分析/序列分类 Keras

    LSTM 文本情感分析/序列分类 Keras 请参考 http://spaces.ac.cn/archives/3414/   neg.xls是这样的 pos.xls是这样的neg=pd.read_e ...

  7. 用python做文本情感分析

    情感分析就是分析一句话说得是很主观还是客观描述,分析这句话表达的是积极的情绪还是消极的情绪.原理比如这么一句话:“这手机的画面极好,操作也比较流畅.不过拍照真的太烂了!系统也不好.” ① 情感词 要分 ...

  8. 文本情感分析(一):基于词袋模型(VSM、LSA、n-gram)的文本表示

    现在自然语言处理用深度学习做的比较多,我还没试过用传统的监督学习方法做分类器,比如SVM.Xgboost.随机森林,来训练模型.因此,用Kaggle上经典的电影评论情感分析题,来学习如何用传统机器学习 ...

  9. 文本情感分析(二):基于word2vec、glove和fasttext词向量的文本表示

    上一篇博客用词袋模型,包括词频矩阵.Tf-Idf矩阵.LSA和n-gram构造文本特征,做了Kaggle上的电影评论情感分类题. 这篇博客还是关于文本特征工程的,用词嵌入的方法来构造文本特征,也就是用 ...

随机推荐

  1. iOS:上线的基本流程

    1.创建唯一标书符App ID 首先打开开发者网站,进入证书页面,我们点击Identifiers下边App IDs选项,然后点击右上角加号,如图: 2.申请发布证书 我们点击Certificates下 ...

  2. add-strings

    https://leetcode.com/problems/add-strings/ package com.company; import java.util.LinkedList; import ...

  3. 自定义ImageView 手势 缩放 滑动 矩阵

    功能 初始时大小控制,图片宽或高大于view的,缩小至view大小,否则按原始大小显示双击放大,第一次双击后将图片宽或高放大到view的宽或高的比例再次双击会再在此前基础上放大固定的倍数放大两次后后再 ...

  4. hdu5297 Y sequence(容斥原理+迭代)

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=5297 题意:给定整数n和整数r,在1.2.3.4.5.......的序列中删掉能够开2次方的数,3次方的数 ...

  5. PL/SQL 之 基础

    PL/SQL(Procedural Language extensions to SQL)是Oracle 对标准 SQL 语言的过程化扩展,是专门用于各种环境下对 Oracle 数据库进行访问和开发的 ...

  6. iOS arc和非arc 适用 宏

    iOS arc和非arc 适用 宏 1:使用宏 + (void)showAlertWithMessage:(NSString *)messages { dispatch_async(dispatch_ ...

  7. PHP XML Parser函数

    PHP XML Parser 函数 PHP XML Parser 简介 XML 函数允许您解析 XML 文档,但无法对其进行验证. XML 是一种用于标准结构化文档交换的数据格式.您可以在我们的 XM ...

  8. Reimplementing event handler

    Events in PyQt4 are processed often by reimplementing event handlers. #!/usr/bin/python # -*- coding ...

  9. DBCP(一)数据源配置文件

    DBCP是Apache开发的数据源API,使用的话需要导入dbcp jar包.collections jar包.pool jar包. 其数据源匹配的配置文件格式如下:   #连接设置 driverCl ...

  10. 转:sock_ev——linux平台socket事件框架(socket API的封装) .

    把linux平台提供的有关socket操作的API进行封装是有必要的:基于stream操作的流程与基于dgram操作的流程略有不同,分别放在两个类中,但两者又有很多相似的操作,因此写一个基类,让其继承 ...