【BZOJ】2440: [中山市选2011]完全平方数
【题意】T次询问第k小的非完全平方数倍数的数。T<=50,k<=10^9。(即无平方因子数——素因数指数皆为0或1的数)
【算法】数论(莫比乌斯函数)
【题解】考虑二分,转化为询问[1,x]中无平方因子数的个数(x最大为2n)。
运用容斥,答案ans=x - 1个素数的平方的倍数的数的个数 + 2个素数的乘积的平方的倍数的数的个数……
枚举i=[1,√x]的所有数字,系数是莫比乌斯函数,i的平方的倍数的数的个数就是n/(i^2)。
ans=x-Σμ(i)*n/(i^2),i∈[1,√x]
复杂度O(T*√n)。
注意:二分上届为2n,l+r会爆int。
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const int maxn=;
int T,tot,n,miu[maxn],prime[maxn];
bool mark[maxn];
int main(){
scanf("%d",&T);
miu[]=;
for(int i=;i<=;i++){
if(!mark[i]){prime[++tot]=i;miu[i]=-;}
for(int j=;j<=tot&&i*prime[j]<=;j++){
mark[i*prime[j]]=;
if(i%prime[j]==)break;
miu[i*prime[j]]=-miu[i];
}
}
while(T--){
scanf("%d",&n);
long long l=,r=*n,mid,ans;//
while(l<r){
mid=(l+r)>>;ans=;int sq=(int)sqrt(mid);
for(int i=;i<=sq;i++){
ans+=miu[i]*mid/i/i;
}
if(ans>=n)r=mid;else l=mid+;
}
printf("%lld\n",l);
}
return ;
}
定义集合x(素数)表示不是x^2的倍数的数字集合。
则要求集合并,容易知道集合交的补集。
【BZOJ】2440: [中山市选2011]完全平方数的更多相关文章
- BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数
BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数 题面 找出第k个不是平方数的倍数的数(1不是平方数, \(k \le 10^9\)). 题解 首先二分答案,问题就转化成了求\([ ...
- BZOJ 2440 [中山市选2011]完全平方数 (二分 + 莫比乌斯函数)
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 4805 Solved: 2325[Submit][Sta ...
- BZOJ 2440: [中山市选2011]完全平方数 [容斥原理 莫比乌斯函数]
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3028 Solved: 1460[Submit][Sta ...
- BZOJ 2440: [中山市选2011]完全平方数( 二分答案 + 容斥原理 + 莫比乌斯函数 )
先二分答案m,<=m的有m-∑(m/pi*pi)+∑(m/pi*pi*pj*pj)-……个符合题意的(容斥原理), 容斥系数就是莫比乌斯函数μ(预处理)... ----------------- ...
- Bzoj 2440: [中山市选2011]完全平方数(莫比乌斯函数+容斥原理+二分答案)
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MB Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平 ...
- [BZOJ 2440] [中山市选2011] 完全平方数 【二分 + 莫比乌斯函数】
题目链接:BZOJ - 2440 题目分析 首先,通过打表之类的方法可以知道,答案不会超过 2 * k . 那么我们使用二分,对于一个二分的值 x ,求出 [1, x] 之间的可以送出的数有多少个. ...
- BZOJ 2440 [中山市选2011]完全平方数 二分+容斥
直接筛$\mu$?+爆算?再不行筛素数再筛个数?但不就是$\mu^2$的前缀和吗? 放...怕不是数论白学了$qwq$ 思路:二分+容斥 提交:两次(康了题解) 题解: 首先答案满足二分性质(递增), ...
- bzoj 2440: [中山市选2011]完全平方数
#include<cstdio> #include<iostream> #include<cstring> #include<cmath> #defin ...
- BZOJ.2440.[中山市选2011]完全平方数(莫比乌斯函数 二分)
题目链接 总感觉博客园的\(Markdown\)很..\(gouzhi\),可以看这的. 题意即求第\(k\)个无平方因子数. 无平方因子数(Square-Free Number),即分解之后所有质因 ...
- BZOJ 2440 [中山市选2011]完全平方数 ——莫比乌斯函数
$\sum_{i=1}^n[i==d^2*p]$ 其中p无平方因子$=\sum_{d^2\mid n,d>=2}\sum_{i=1}^{\lfloor {n/d^2} \rfloor} \lef ...
随机推荐
- goroutine与channels
goroutine(协程) 大家都知道java中的线程Thread,golang没有提供Thread的功能,但是提供了更轻量级的goroutine(协程),协程比线程更轻,创办一个协程很简单,只需要g ...
- 关于mysql无法添加中文数据的问题以及解决方案
今天弄了一天的mysql数据库,就是被一个mysql数据库乱码的问题给缠住了.现在记录一下这个问题,虽然这个问题不是什么太大的事情,但还是记录一下. 问题是这样的: 1.先在mysql的安装文件当中, ...
- lintcode-450-K组翻转链表
450-K组翻转链表 给你一个链表以及一个k,将这个链表从头指针开始每k个翻转一下. 链表元素个数不是k的倍数,最后剩余的不用翻转. 样例 给出链表 1->2->3->4->5 ...
- java 重写父类构造器
- 【Java】时间转json格式化
@DateTimeFormat(pattern="yyyy-MM-ddHH:mm:ss") @JsonFormat(pattern="yyyy-MM-ddHH: ...
- 【刷题】洛谷 P3807 【模板】卢卡斯定理
题目背景 这是一道模板题. 题目描述 给定\(n,m,p( 1\le n,m,p\le 10^5)\) 求 \(C_{n+m}^{m}\ mod\ p\) 保证 \(p\) 为prime \(C\) ...
- 硬盘杀手!Windows版Redis疯狂占用C盘空间【转】
[问题的原因] Windows版Redis启动后,会在C盘自动创建一个很大的文件,C:\Users\{你的用户名}\AppData\Local\Redis\RedisQFolk_****.dat 我们 ...
- 【loj6179】Pyh的求和
Portal -->loj6179 Solution 这题其实有一个式子一喵一样的版本在bzoj,但是那题是\(m\)特别大然后只有一组数据 这题多组数据== 首先根据\(\v ...
- Codeforces 25.E Test
E. Test time limit per test 2 seconds memory limit per test 256 megabytes input standard input outpu ...
- Codeforces 894.E Ralph and Mushrooms
E. Ralph and Mushrooms time limit per test 2.5 seconds memory limit per test 512 megabytes input sta ...