51nod1056 最长等差数列 V2
第1行:N,N为正整数的数量(1000 <= N <= 50000)。
第2 - N+1行:N个正整数。(2<= A[i] <= 10^9)
(注,真实数据中N >= 1000,输入范例并不符合这个条件,只是一个输入格式的描述)
找出一个长度 >= 200 的等差数列,如果没有,输出No Solution,如果存在多个,输出最长的那个的长度。
10
1
3
5
6
8
9
10
12
13
14
No Solution
随机化 hash 脑洞题
当N增长到5万,V1版本的双指针也怼不过去了。
然而既然题被出到OJ上,就一定有做它的方法(那可不一定.jpg)。
注意到只有ans>=200时才算有解,这说明如果有解,那么解对应的那些数分布是比较密集的(口胡)。
我们可以试着随机枚举两项,算出它们的公差,再分别向前向后找数,看能不能把等差数列续得更长。如果扫描每个数,留给随机化的时间就太少了,我们可以把数存进hash表里,这样就可以O(1)查询数是否存在,跑得飞快。
那么需要随机化多少次呢?本着不卡OJ白不卡的学术精神,我们从小到大倍增尝试。
随机1000次就能过第一个点
随机10000次能过两个点
随机100000次能过四个点
随机800000次能过八个点
随机8000000次能过一半点
随机16000000次只错三个点
随机32000000次就AC辣!
可喜可贺,可喜可贺
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std;
const int mxn=;
int read(){
int x=,f=;char ch=getchar();
while(ch<'' || ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>='' && ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
struct hstb{
int v,nxt;
}e[mxn];
int hd[mxn],mct=;
void insert(int x){
int u=x%mxn;
for(int i=hd[u];i;i=e[i].nxt){
if(e[i].v==x)return;
}
e[++mct].v=x;e[mct].nxt=hd[u];hd[u]=mct;
return;
}
int find(int x){
int u=x%mxn;
for(int i=hd[u];i;i=e[i].nxt){
if(e[i].v==x)return ;
}
return ;
}
int n,a[mxn],b[mxn];
int ans=;
int main(){
int i,j;
srand();
n=read();
for(i=;i<=n;i++)a[i]=read(),b[i]=a[i];;
sort(a+,a+n+);
for(int i=,cnt=;i<=n;i++){
if(a[i]==a[i-])cnt++;
else cnt=;
ans=max(ans,cnt);
}
for(i=;i<=n;i++) insert(a[i]);
random_shuffle(b+,b+n+);
int T=;
while(T--){
int x=rand()%(n-)+,y=rand()%(n-)+;
x=b[x];y=b[y];if(x>y)swap(x,y);
if(x==y)continue;
int tmp=y-x;
int res=;
for(i=y+tmp;i<=a[n];i+=tmp){
if(find(i)){
res++;
}
else break;
}
for(i=x-tmp;i>=a[];i-=tmp){
if(find(i)){
res++;
}
else break;
}
ans=max(ans,res);
}
if(ans>=)printf("%d\n",ans);
else printf("No Solution\n");
return ;
}
51nod1056 最长等差数列 V2的更多相关文章
- n个整数中,找出尽可能多的数使他们组成一个等差数列,求最长等差数列的长度
例子: 3,8,4,5,6,2 返回值应该为 :5 这是昨天做的一道优酷土豆的编程题,和leetcode中的128/ Longest Consecutive Sequence 有点 ...
- 51nod1055 最长等差数列
完全一脸懵逼!.dp[i][j]表示i,j为相邻的两项的最大值.两个指针两边扫的思想好劲啊这个!%%% #include<cstdio> #include<cstring> # ...
- 51 nod 1055 最长等差数列(dp)
1055 最长等差数列 基准时间限制:2 秒 空间限制:262144 KB 分值: 80 难度:5级算法题 N个不同的正整数,找出由这些数组成的最长的等差数列. 例如:1 3 5 6 8 9 ...
- 『最长等差数列 线性DP』
最长等差数列(51nod 1055) Description N个不同的正整数,找出由这些数组成的最长的等差数列. 例如:1 3 5 6 8 9 10 12 13 14 等差子数列包括(仅包括两项的不 ...
- 【51Nod】1055 最长等差数列 动态规划
[题目]1055 最长等差数列 [题意]给定大小为n的互不不同正整数集合,求最长等差数列的长度.\(n \leq 10000\). [算法]动态规划 两个数之间的差是非常重要的信息,设\(f_{i,j ...
- 51nod-1055-最长等差数列(dp+优化)
1055 最长等差数列 基准时间限制:2 秒 空间限制:262144 KB 分值: 80 难度:5级算法题 收藏 关注 N个不同的正整数,找出由这些数组成的最长的等差数列. 例如:1 3 ...
- 51Nod - 1055:最长等差数列 (求最长的等差数列)
N个不同的正整数,找出由这些数组成的最长的等差数列. 例如:1 3 5 6 8 9 10 12 13 14 等差子数列包括(仅包括两项的不列举) 1 3 5 1 5 9 13 3 6 9 12 ...
- 51Nod 1055 最长等差数列 (dp+哈希)
1055 最长等差数列 基准时间限制:2 秒 空间限制:262144 KB 分值: 80 难度:5级算法题 收藏 关注 N个不同的正整数,找出由这些数组成的最长的等差数列. 例如:1 3 5 6 ...
- 51nod 1055:最长等差数列
1055 最长等差数列 基准时间限制:2 秒 空间限制:262144 KB 分值: 80 难度:5级算法题 收藏 取消关注 N个不同的正整数,找出由这些数组成的最长的等差数列. 例如:1 3 5 ...
随机推荐
- oracle与DB2的一些架构
首先,我们需要理解 Oracle 使用的架构,并理解它与 DB2 的不同之处.图 1 展示了 Oracle 的系统结构.将该图与 图 2 进行比较,后者显示了 DB2 的系统结构.在阅读本文的时候,为 ...
- WPF和Expression Blend开发实例:Adorner(装饰器)应用实例
装饰器-- 表示用于修饰 UIElement 的 FrameworkElement 的抽象类 简单来说就是,在不改变一个UIElement结构的情况下,将一个Visual对象加到它上面. 应用举例: ...
- windows查看端口占用指令
1.Windows平台 在windows命令行窗口下执行: 1.查看所有的端口占用情况 C:\>netstat -ano 协议 本地地址 外部地址 ...
- p2 钢体
钢体可以控制沿x方向移动,沿y方向移动, 不旋转等. fixedX, fixedY, fixedRotaion 1)addBody和removeBody:World类中的addBody()和remov ...
- ProcessList.java和adj值
简单地讲,adj值决定了在系统资源吃紧的情况下,要先杀掉哪些进程. 在Android的lowmemroykiller机制中,会对于所有进程进行分类,对于每一类别的进程会有其oom_adj值的取值范围, ...
- 题解 P1888 【三角函数】
堆排序万岁! 小金羊又来水题了 #include <iostream> #include <queue> using namespace std; priority_queue ...
- GDOI2015小Z的旅行路线
GDOI2015小Z的旅行路线 题意: \(n\)个点的无根树,边上有权值. \(q\)个询问\(s\)和\(s\),问从\(s\)出发,找一条最长路(不经过重复点),保证路径上所有边边权不超过\(x ...
- 使DIV相对窗口大小左右拖动始终水平居中
<!doctype html> <html> <head> <meta http-equiv="content-type" content ...
- 自动化测试常用断言的使用方法(python)
自动化测试中寻找元素并进行操作,如果在元素好找的情况下,相信大家都可以较熟练地编写用例脚本了,但光进行操作可能还不够,有时候也需要对预期结果进行判断. 这里介绍几个常用断言的使用方法,可以一定程度上帮 ...
- [知识点]C++中STL容器之map
UPDATE(20190416):写完vector和set之后,发现不少内容全部引导到map上了……于是进行了一定的描述补充与更正. 零.STL目录 1.容器之map 2.容器之vector 3.容器 ...