快速幂取模_C++
一、题目背景
已知底数a,指数b,取模值mo
求ans = ab % mo
二、朴素算法(已知可跳过)
ans = 1,循环从 i 到 b ,每次将 ans = ans * a % mo
时间复杂度O(b)
void power(int a,int b,int mo)
{
int i;
ans=;
for (i=;i<=b;i++)
{
ans*=a;
ans%=mo;
}
}
三、快速幂
先讨论无需取模的
当b为偶数时:ab=a(b/2)*2=(a2)b/2
当b为奇数时:ab=a*ab-1=a*(a2)(b-1)/2
如 28=(22)4 27=2*(22)3
所以,我们可以如此迭代下去
210=(22)5=(22)*[(22)2]2
① ② ③
指数为10 是一个偶数,则底数2平方,指数变为一半 [ ①→② ]
指数为5 是一个奇数,则先将底数提出作为系数(22),此时指数为4 是一个偶数,则底数22再平方,指数再变为一半 [ ②→③ ]
归纳总结得到:
当指数大于1时,若为 偶数 则将指数除以2,底数平方
若为 奇数 则先提出一个为底数的系数(可直接把该系数乘进ans中),所以指数减1,然后再按照 偶数 的办法做
不断迭代下去,当指数为1时,则直接得出答案
最后只要将每次相乘时取模即可,时间复杂度O(log2b)
inline int mi(int a,int b)
{
int ans=;
a%=mo;
while (b)
{
if (b&) ans=ans*a%mo;
b>>=;
a=a*a%mo;
}
return ans;
}
(代码更新时间2016年11月7日17:20:54)
版权所有,转载请联系作者,违者必究
QQ:740929894
快速幂取模_C++的更多相关文章
- 【转】C语言快速幂取模算法小结
(转自:http://www.jb51.net/article/54947.htm) 本文实例汇总了C语言实现的快速幂取模算法,是比较常见的算法.分享给大家供大家参考之用.具体如下: 首先,所谓的快速 ...
- HDU 1061 Rightmost Digit --- 快速幂取模
HDU 1061 题目大意:给定数字n(1<=n<=1,000,000,000),求n^n%10的结果 解题思路:首先n可以很大,直接累积n^n再求模肯定是不可取的, 因为会超出数据范围, ...
- UVa 11582 (快速幂取模) Colossal Fibonacci Numbers!
题意: 斐波那契数列f(0) = 0, f(1) = 1, f(n+2) = f(n+1) + f(n) (n ≥ 0) 输入a.b.n,求f(ab)%n 分析: 构造一个新数列F(i) = f(i) ...
- POJ3641-Pseudoprime numbers(快速幂取模)
题目大意 判断一个数是否是伪素数 题解 赤果果的快速幂取模.... 代码: #include<iostream> #include<cmath> using namespace ...
- 九度OJ 1085 求root(N, k) -- 二分求幂及快速幂取模
题目地址:http://ac.jobdu.com/problem.php?pid=1085 题目描述: N<k时,root(N,k) = N,否则,root(N,k) = root(N',k). ...
- HDU--杭电--4506--小明系列故事——师兄帮帮忙--快速幂取模
小明系列故事——师兄帮帮忙 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others) To ...
- CodeForces Round #191 (327C) - Magic Five 等比数列求和的快速幂取模
很久以前做过此类问题..就因为太久了..这题想了很久想不出..卡在推出等比的求和公式,有除法运算,无法快速幂取模... 看到了 http://blog.csdn.net/yangshuolll/art ...
- HDU1013,1163 ,2035九余数定理 快速幂取模
1.HDU1013求一个positive integer的digital root,即不停的求数位和,直到数位和为一位数即为数根. 一开始,以为integer嘛,指整型就行吧= =(too young ...
- Powmod快速幂取模
快速幂取模算法详解 1.大数模幂运算的缺陷: 快速幂取模算法的引入是从大数的小数取模的朴素算法的局限性所提出的,在朴素的方法中我们计算一个数比如5^1003%31是非常消耗我们的计算资源的,在整个计算 ...
随机推荐
- PHP之implode()方法
implode — 将一个一维数组的值转化为字符串 string implode ( string $glue , array $pieces ) string implode ( array $pi ...
- Android自动化 -- sendevent/getevent 用法
getevent&sendevent 是android系统下的一个工具,可以 模拟 多种按键和触屏操作,产生的是raw event,raw event经过event hub处理产生最终的ges ...
- ie浏览器升级的正确姿势
一.版本说明 1.当前IE浏览器分为一下几个版本:IE 6,IE 7,IE 8,IE 9,IE 10,IE 11 2.windows最高支持IE版本win xp:IE 8win 7 :IE 11win ...
- Strus默认跳转方式是请求转发 地址栏不变 与javaweb的内部转发一样
Strus默认跳转方式是请求转发 地址栏不变 与javaweb的内部转发一样
- P4622 [COCI2012-2013#6] JEDAN
题目背景 COCI 题目描述 有N个数排成一行(数值代表高度),最初所有的数都为零,你可以选择连续的一段等高的数,将它们都增加1(除了开头和结尾那个数)如下图表示了两次操作: 现在有一些数字看不清了, ...
- Day22-CSRF跨站请求伪造
csrf 跨站请求伪造 一.简介 django为用户实现防止跨站请求伪造的功能,通过中间件 django.middleware.csrf.CsrfViewMiddleware 来完成. 1.1 第1次 ...
- gpart 分区工具
gpart 分区工具 https://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/disk-organization.html Table 3 ...
- Kerberos的白银票据详解
0x01白银票据(Silver Tickets)定义 白银票据(Silver Tickets)是伪造Kerberos票证授予服务(TGS)的票也称为服务票据.如下图所示,与域控制器没有AS-REQ 和 ...
- SSH不能连接并提示REMOTE HOST IDENTIFICATION HAS CHANGED解决
SSH不能连接并提示REMOTE HOST IDENTIFICATION HAS CHANGED解决方法: 如果提示信息如下: @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ ...
- Spring切面二使用注解
package com.IC; public interface PhoneBiz { public void buyPhone(int num); //购买手机; public void saleP ...