Python实现——二层BP神经网络
2019/4/23更新
下文中的正确率极高是建立在仅有50组训练数据的基础上的,十分不可靠。建议使用提供的另一个生成训练集的generate_all函数,能产生所有可能结果,更加可靠。
2019/4/20
二层BP神经网络
但是仍有部分在公式上的不明了,但是其运作方式还是很简单的,先简单解析我的代码
from createData import generate_data
是本次所解题目的训练集生成软件,generate_data(N)会返回两个数组,一个为N乘100的训练集及其对应的N乘1的结果,十分方便
L0=2*np.random.random((100,5))-1
L1=2*np.random.random((5,1))-1
由于本次想构建的是二层神经网络,因此需要两层的计算层,其中我将中间的隐藏层设置为5个神经元,而输出层的表示方法为0.1~0.6的离散数,而不是6个0或1元素的数组,因此输出层为1个神经元(而不是6个),这样经过矩阵运算后矩阵维度能够与结果相同。
def sigmoid(x):
return 1/(1+np.exp(-x))
本次使用的激活函数:sigmoid函数,特点为非线性(并不是条直线),区间在[0,1]上,且没有任何点导数为0(趋近于0的有),同时他的导数也非常简洁:
def dsigmoid(x):
return x*(1-x)
因此这一次选择使用这个激活函数。
生成数据:
X,Y=generate_data(50)
X=np.array(X)
Y=np.array(Y)
#shape of parameters
#X(50*100) Y(50*1)
#L0(100*5) L1(5*1)
L0=2*np.random.random((100,5))-1
L1=2*np.random.random((5,1))-1
要谨记转换两数据的形式(List/Array)
并且标记出来了X,Y,L0,L1,分别的维数方便查看,其中L0,L1的生成方式是产生了填满位于[-1,1]的元素的数组(应该是吧...)
主题训练过程:
for i in range(50000):
#forward
temp0=X
temp1=sigmoid(np.dot(temp0,L0))
temp2=sigmoid(np.dot(temp1,L1))
error2=Y-temp2
if (i%5000)==0:
print(np.mean(error2))
#backward
d2=error2*dsigmoid(temp2)
error1=d2.dot(L1.T)
d1=error1*dsigmoid(temp1)
L1+=temp1.T.dot(d2)
L0+=temp0.T.dot(d1)
整体而言得益于矩阵使得过程十分流畅,内容主要涉及到了不断的求偏导并运用链式法则不断"接近"结果与目标变量的偏导,先不赘述算法了。
最后的检验部分...应该也不用再讲什么了吧...
同时由于开始的层元素为随机生成所以每次运行不一定相同,可以用seed()函数解决这个问题
Test1:
-0.19711045500123067
-5.796510982417874e-05
-2.6806406495373803e-05
-1.2019265739013352e-05
-5.227927664957222e-06
-2.2248997057949804e-06
-9.364114896748266e-07
-3.9213879621080584e-07
-1.6385924452994028e-07
-6.84074828341541e-08
[[0.40000002]
[0.50000153]]
[[0.4]
[0.5]]
Test2:
0.16291901475086618
-0.0035140803158310225
1.9674898472920034e-05
2.840084784809016e-05
1.790320520679012e-05
1.059859397264329e-05
5.907123617054088e-06
3.147002414242428e-06
1.6152543191538805e-06
3.5777556424282377e-07
[[0.40004171]
[0.50000385]]
[[0.4]
[0.5]]
不过倒是可以看出来挺准确的就是了...
更新一张学习时的正确率的图片:
可以看出在很早的时候就已经能接近100%了,十分惊人,相关代码如下:
y=[]
count=0
for i in range(Y.size):
if(abs(temp2[i][0]-Y[i][0]))<=0.001:
count +=1
y.append(count/Y.size)
x=np.linspace(0,50000,50000)
plt.plot(x,y)
plt.show()
完整代码如下:
import numpy as np
import matplotlib.pyplot as plt
from createData import generate_data
def sigmoid(x):
return 1/(1+np.exp(-x))
def dsigmoid(x):
return x*(1-x)
X,Y=generate_data(50)
X=np.array(X)
Y=np.array(Y)
#shape of parameters
#X(50*100) Y(50*1)
#L0(100*5) L1(5*1)
L0=2*np.random.random((100,5))-1
L1=2*np.random.random((5,1))-1
y=[]
for i in range(50000):
#forward
count=0
temp0=X
temp1=sigmoid(np.dot(temp0,L0))
temp2=sigmoid(np.dot(temp1,L1))
error2=Y-temp2
if (i%5000)==0:
print(np.mean(error2))
for i in range(Y.size):
if(abs(temp2[i][0]-Y[i][0]))<=0.001:
count +=1
y.append(count/Y.size)
#backward
d2=error2*dsigmoid(temp2)
error1=d2.dot(L1.T)
d1=error1*dsigmoid(temp1)
L1+=temp1.T.dot(d2)
L0+=temp0.T.dot(d1)
X1,Y1=generate_data(2)
X1=np.array(X1)
Y1=np.array(Y1)
t1=sigmoid(np.dot(X1,L0))
t2=sigmoid(np.dot(t1,L1))
x=np.linspace(0,50000,50000)
plt.plot(x,y)
plt.show()
print(t2)
print(Y1)
Python实现——二层BP神经网络的更多相关文章
- Python语言编写BP神经网络
Python语言编写BP神经网络 2016年10月31日 16:42:44 ldy944758217 阅读数 3135 人工神经网络是一种经典的机器学习模型,随着深度学习的发展神经网络模型日益完善 ...
- python手写bp神经网络实现人脸性别识别1.0
写在前面:本实验用到的图片均来自google图片,侵删! 实验介绍 用python手写一个简单bp神经网络,实现人脸的性别识别.由于本人的机器配置比较差,所以无法使用网上很红的人脸大数据数据集(如lf ...
- BP神经网络原理及python实现
[废话外传]:终于要讲神经网络了,这个让我踏进机器学习大门,让我读研,改变我人生命运的四个字!话说那么一天,我在乱点百度,看到了这样的内容: 看到这么高大上,这么牛逼的定义,怎么能不让我这个技术宅男心 ...
- Python实现bp神经网络识别MNIST数据集
title: "Python实现bp神经网络识别MNIST数据集" date: 2018-06-18T14:01:49+08:00 tags: [""] cat ...
- BP神经网络与Python实现
人工神经网络是一种经典的机器学习模型,随着深度学习的发展神经网络模型日益完善. 联想大家熟悉的回归问题, 神经网络模型实际上是根据训练样本创造出一个多维输入多维输出的函数, 并使用该函数进行预测, 网 ...
- python构建bp神经网络_曲线拟合(一个隐藏层)__2.代码实现
IDE:jupyter 抽象程度可能不是那么高,以后再优化. 理论和代码实现的差距还是挺大的 数据集请查看 python构建bp神经网络(一个隐藏层)__1.数据可视化 部分代码预览 git上传.ip ...
- BP神经网络在python下的自主搭建梳理
本实验使用mnist数据集完成手写数字识别的测试.识别正确率认为是95% 完整代码如下: #!/usr/bin/env python # coding: utf-8 # In[1]: import n ...
- 三层BP神经网络的python实现
这是一个非常漂亮的三层反向传播神经网络的python实现,下一步我准备试着将其修改为多层BP神经网络. 下面是运行演示函数的截图,你会发现预测的结果很惊人! 提示:运行演示函数的时候,可以尝试改变隐藏 ...
- 用Python实现BP神经网络(附代码)
用Python实现出来的机器学习算法都是什么样子呢? 前两期线性回归及逻辑回归项目已发布(见文末链接),今天来讲讲BP神经网络. BP神经网络 全部代码 https://github.com/lawl ...
随机推荐
- ServiceStack.redis用法
using System; using System.Collections.Generic; using ServiceStack.Redis; namespace SysBuild { class ...
- ethtool -p eth0 物理口一个灯在不停的闪烁
摘自:https://blog.csdn.net/morigejile/article/details/78598645 你的 服务器有多个网卡并且已经配置好运行当中,你却没记得eth0.eth1. ...
- springboot之JdbcTemplate单数据源使用
本文介绍在Spring Boot基础下配置数据源和通过JdbcTemplate编写数据访问的示例. 数据源配置 在我们访问数据库的时候,需要先配置一个数据源,下面分别介绍一下几种不同的数据库配置方式. ...
- SpringMVC错误集中营
1.eclipse里的错误提示为The import javax.servlet.http.HttpServletRequest cannot be resolved 1.这是因为工程里面web-in ...
- java IO类简单介绍
一.流的概念 流是字节序列的抽象概念.流和文件的差别:文件是数据的静态存储形式,而流是指数据传输时的形态.文件只是流的操作对象之一.流按其操作的对象不同可以分为文件流.网络流.内存流.磁带流等.Jav ...
- URAL 1698. Square Country 5(记忆化搜索)
题目链接 题意 : 自守数的定义:如果某个数的平方的末尾几位数等于这个数,那么就称这个数为自守数.例如5*5=25,则5就是自守数.让你求不超过n位的自守数有多少 思路 : 实际上,自守数还有两个性质 ...
- soapUI的bug切换版本解决
目录 文章背景 目录 运行环境及出现的问题 问题解决 说明 参考文章 版本记录 文章背景 为公司编写了一个webservice,本地测试时候是没有问题的,发布到现场之后,访问出现异常,通过切换soap ...
- C#中遇到的方法总结
1.Select(string filterExpression, string sort) // 获取按照指定的排序顺序且与筛选条件相匹配的所有 System.Data.DataRow 对象的数组 ...
- cenos7切换阿里源
备份并安装base reop源 cd /etc/yum.repos.d sudo mv CentOS-Base.repo CentOS-Base.repo.bak 下载阿里源并配置 sudo wget ...
- JavaScript的词法作用域问题
多年以前,当我怀揣着前端工程师的梦想时,曾经认真阅读过<JavaScript高级程序设计(第2版)>.里面有一个问题(P147),让我一直百思不得其解. function createFu ...