【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 13—Clustering 聚类
Lecture 13 聚类 Clustering
13.1 无监督学习简介 Unsupervised Learning Introduction
现在开始学习第一个无监督学习算法:聚类。我们的数据没有附带任何标签,拿到的数据就是这样的:

例子:

(注:这里有考题,问哪些可以使用聚类算法)
13.2 K-means算法 K-Means Algorithm
K-Means 是最普及的聚类算法,算法接受一个未标记的数据集,然后将数据聚类成不同的组。
迭代过程为:
1)选择K个随机的点,称为聚类中心(cluster centroids);
2)对于数据集中的每个数据,按照距离K个中心点的距离,将其与距离最近的中心点关联起来,与同一个中心点关联的所有点聚成一类。
3)计算每一个组的平均值,将该组所关联的中心点移动到平均值的位置。
4)重复步骤 2-3 直至中心点不再变化。

下面是一个聚类示例:
初始化随机的中心点,计算距离后分类,然后移动中心点



迭代很多次之后,得到最终聚类结果:

在没有非常明显组群的情况下,也可以使用K-means。例如下图中,使用K-means 确定要生产的 T-恤衫的三种尺寸:

13.3 优化目标 Optimization Objective
K-means最小化问题,是要最小化所有数据点与其所关联的聚类中心点之间的距离之和,因此 K-means的代价函数(又称畸变函数 Distortion function)为:

目标是使其最小

由于算法第一个循环用于减小 c(i) 引起的代价,而第二个循环则是用于减小 μi 引起的代价。会在每一次迭代都减小代价,不然便说明存在错误。

13.4 随机初始化 Random Initialization
随机初始化的聚类中心点的方法:
a) 选择K < m,即聚类中心点的个数要小于所有训练集实例的数量
b) 随机选择K个训练实例,然后令K个聚类中心分别与这K个训练实例相等


K-means的一个问题在于,如果初始化不好,有可能会停留在一个局部最小值处。通常需要运行多次 K-means算法,每一次都重新随机初始化,最后比较多次运行 K-means的结果,选择代价函数最小的结果。这种方法在K较小的时候(2-10)可行,如果K较大可能不会有明显地改善。


13.5 选择聚类数 Choosing the Number of Clusters
没有最好的选择聚类数的方法,通常是需要根据不同的问题人工选择。需要思考运用 K-means算法的动机,然后选择能最好服务于该目的的聚类数。
这里存在一个“肘部法则”:改变聚类数K,运行聚类算法,然后计算成本函数(畸变函数)J。 有可能会得到一条类似于肘部的曲线:

上图在 3 的时候达到一个肘点。在此之后,畸变值就下降的非常慢,那么我们就选K = 3。
但是大部分情况下图像会像右图一样没有肘点。就需要人工选择。 例如,根据客户需求选择 T-恤的尺寸数:

附,参考黄海广笔记:



【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 13—Clustering 聚类的更多相关文章
- 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 15—Anomaly Detection异常检测
Lecture 15 Anomaly Detection 异常检测 15.1 异常检测问题的动机 Problem Motivation 异常检测(Anomaly detection)问题是机器学习算法 ...
- 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 16—Recommender Systems 推荐系统
Lecture 16 Recommender Systems 推荐系统 16.1 问题形式化 Problem Formulation 在机器学习领域,对于一些问题存在一些算法, 能试图自动地替你学习到 ...
- 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 14—Dimensionality Reduction 降维
Lecture 14 Dimensionality Reduction 降维 14.1 降维的动机一:数据压缩 Data Compression 现在讨论第二种无监督学习问题:降维. 降维的一个作用是 ...
- 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 12—Support Vector Machines 支持向量机
Lecture 12 支持向量机 Support Vector Machines 12.1 优化目标 Optimization Objective 支持向量机(Support Vector Machi ...
- 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 11—Machine Learning System Design 机器学习系统设计
Lecture 11—Machine Learning System Design 11.1 垃圾邮件分类 本章中用一个实际例子: 垃圾邮件Spam的分类 来描述机器学习系统设计方法.首先来看两封邮件 ...
- 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 10—Advice for applying machine learning 机器学习应用建议
Lecture 10—Advice for applying machine learning 10.1 如何调试一个机器学习算法? 有多种方案: 1.获得更多训练数据:2.尝试更少特征:3.尝试更多 ...
- 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 1_Introduction and Basic Concepts 介绍和基本概念
目录 1.1 欢迎1.2 机器学习是什么 1.2.1 机器学习定义 1.2.2 机器学习算法 - Supervised learning 监督学习 - Unsupervised learning 无 ...
- 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 18—Photo OCR 应用实例:图片文字识别
Lecture 18—Photo OCR 应用实例:图片文字识别 18.1 问题描述和流程图 Problem Description and Pipeline 图像文字识别需要如下步骤: 1.文字侦测 ...
- 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 17—Large Scale Machine Learning 大规模机器学习
Lecture17 Large Scale Machine Learning大规模机器学习 17.1 大型数据集的学习 Learning With Large Datasets 如果有一个低方差的模型 ...
随机推荐
- Linux驱动程序接口
§1. Linux驱动程序接口 系统调用是操作系统内核与应用程序之间的接口,设备驱动程序则是操作系统内核与机器硬件的接口.几乎所有的系统操作最终映射到物理设备,除了CPU.内存和少数其它设备,所有的设 ...
- 使用neon 开发nodejs addon
备注:开发使用的是mac 系统,需要安装rust nodejs .python2.7 Xcode 1. 安装neon npm install -g neon-cli 2. 创建简单项目 neon ...
- riotjs 简单使用&&browserify 构建
项目地址: http://riotjs.com/ 备注: 为了简单使用了 browserify 进行构建 1. 项目结构 ├── app.css ├── gulpfile.js ├── index.h ...
- 使用实例 ---- 使用NUnit在.Net编程中进行单元测试
[--- 资料是从免费网站上获取的,上载在这里,只为交流学习目的,文章原作者保留所有权力,如本博客的内容侵犯了你的权益,请与以下地址联系,本人获知后,马上删除.同时本人深表歉意,并致以崇高的谢意!e ...
- win7 + python2.7 安装scipy
问题: 直接pip install scipy将不能正确安装,缺少文件 方法: 下载 "scipy‑0.19.0‑cp27‑cp27m‑win_amd64.whl"[90多M] ...
- linux 时钟时间,用户CPU时间,系统CPU时间 .
之前看过几次这几个的概念,但还是老是记不住,干脆就直接写下来,以后方便看~ 所谓的时钟时间又叫做墙上时钟时间,它是进程运行的时钟总量,其值与系统中同时运行的进程数有关,不过一般在讨论时钟时间的时候都是 ...
- Memcached: 目录
ylbtech-Memcached: 目录 1.返回顶部 2.返回顶部 3.返回顶部 4.返回顶部 5.返回顶部 6.返回顶部 7.返回顶部 8.返回顶部 9.返回 ...
- kotlin学习三:初步认识kotlin(第二篇)
上一章熟悉了kotlin基本的变量和函数声明,并明白了如何调用函数.本章再来看一些其他有用的东西 包括: 1. kotlin代码组织结构 2. when语法 3. 循环迭代语法 4. try表达式 1 ...
- Ajax显示隐藏
$(function(){ $('#search').click(function(){ if($(".search_div").is(":visible")) ...
- 关于Eclipse中复制粘贴一个项目后的操作
今天在做一个小Demo,内容和之前的项目有些类似就直接复制过来了,项目名修改了,web.xml的项目名也修改了,可是部署到Tomcat之后,以这个新项目名进行访问就会出现404的错误,只可以使用复制之 ...